
!

!

Bioinformatics Workshop for
Helminth Genomics

September 10-11, 2015

Sponsors:
__

- 1 -

!

!

Table of contents – Curriculum

September 10, 2015

Section 0: Cloud Computing

Module 0 – Introduction to cloud computing using Amazon’s AWS……………………5

Section 1: Genome

Module 1 – Sequencing platforms…………………………………………………… ….8

! Common sequencing platforms
! Choosing appropriate sequencing platform
! Sequencer output(s)
! QC sequence output

Module 2 – Sequence data files………………………………………………………...11

! Common sequencing file formats
! Convert between formats

Module 3 – Analytical processing of sequences…………………………..………..14

! Learn how to process genomic data to a cleaned state, ready for analysis

Module 4 – Genome assembly………….………………………………………………20

! De novo genome assembly
! Assembly improvement
! QC de novo assemblies

Module 5 – Genome annotation………………………………………………….……..23

! Identify & mask repeats in an assembly
! De novo gene calling
! Assess gene annotations
! Improve gene annotations
! Common genome annotation formats

Module 6 – Functional annotation…………………………………………….………..29

! Assign basic functional annotation to predicted genes
! Similarity search on custom databases
! Common resources used for functional annotation

- 2 -

!

!

Section 2: Transcriptome

Module 0 – RNA isolation to sequence production…………………………………33

! RNAseq data production, RNA isolation to sequencing
! Analytical processing of RNAseq data to a cleaned state, ready for analysis

Module 1 – Genome based RNA-seq analyses………………………………………44

! Align RNAseq data to a genome assembly
! Visualizing alignments

Module 2 – De novo transcript assembly………………………………………….….48

! Read normalization
! De novo transcript assembly
! Quality filtering of assembled transcripts

September 11, 2015

Module 3 – Expression and differential expression………………………..………54

! Experimental design (biological replicates, time courses, stages, tissues, etc.)
! PCA and hierarchical clustering
! Analyze differential expression
! Measure, interpret and visualize expression in MS Excel
! Organize and mine a database of gene annotation
! Functional enrichment of differentially expressed genes

Section 3: Variome

Module 0 – Re-sequencing genomes….………………………………………………91

! Re-sequencing genomes

Module 1 – Processing and alignment………………………………………………..95

! Analytical processing and alignment of reads
! Refining alignments for variant calling

Module 2 – Variant calling……………………………………………………………….99

! Basics of variant calling & how to filter for high quality loci
! Visualization of variants

Module 3 – Variant annotation………………………………………………………...108

! Variant annotation
! Annotation interpretation

- 3 -

!

!

Section 4: Final topics

Module 0 – Finding sequence resources…………………………….…….………..111

! Locate and download annotated references
! Finding Helminth resources

Module 1 – Bioinformatics packages………………………………………..……….111

! Popular Bioinformatics toolsets
! Galaxy platform for running bioinformatics workflows

Module 2 – Sources of help for bioinformaticians………………………….……..112

! Get help with bioinformatics problems

Module 3 – Open discussion…………………………………………………….…….112

! Questions & Answers

Workshop organizer and facilitator:

Makedonka Mitreva, PhD
Associate Professor of Medicine @ Washington University School of Medicine

http://genome.wustl.edu/people/individual/makedonka-mitreva/

!

Workshop instructors (Mitreva lab):
Section 1:
John Martin
Philip Ozersky
Section 2:
Samantha McNulty, PhD
Bruce A. Rosa, PhD
Section 3:
Young-Jun Choi, PhD
Rahul Tyagi, PhD!

- 4 -

Section 0: Cloud Computing
Module 0: Introduction to cloud computing using Amazon’s AWS
!

Introduction
This document contains command lines & information that will be helpful to you during the
workshop. Think of it as CliffsNotes for the material being presented. It will be helpful to have
this document open electronically while following along with the demonstrations for copy-pasting
the command lines.!!!
!
Command lines will be!printed in a distinctive font to make them stand
out from other text.

In this module you will learn the basics of cloud computing, and a little bit about how we’ll be
taking advantage of Amazon’s AWS. You’ll connect to your EC2 instance and we’ll show you
have to transfer files to and from the EC2 instance. Finally we’ll download some files that will be
needed during later parts of the class.

Cloud computing
This phrase refers to the use of remote hardware resources (CPU, memory, disk space, etc…)
from a local platform (your laptop, a lab workstation, a desktop in your home, etc…). Cloud
computing enables users with limited local resources to have access to powerful computer
hardware, and only pay for the resources they actually consume. Some examples of
commercially available cloud computing services are Amazon’s AWS, Google’s Compute
Engine, Microsoft’s Azure & IBM’s Bluemix.

Virtual Machines
A Virtual Machine (VM) is a software emulation of a computer running an operating system.
Because the processes occurring within a VM are entirely software, it’s possible to ‘save’ a
virtual machine’s current state by taking a ‘snapshot’ of the running software and saving it to
disk.

That snapshot is called an ‘image’ of the running VM. This image can then be restarted at a
later time to restore the exact state of the original VM. Its possible to launch multiple copies of
an image, creating many ‘instances’ of that parent image, all running in the same state as the
original VM when the snapshot was taken.

Workshop image and student instances
To prepare for this workshop we launched a
VM on the Amazon EC2 service. We
started with a pre-built image from Amazon
that had Red Hat Enterprise Linux 7.1
already installed. We launched one
instance of that basic starting image on the
cloud and then loaded all the software and
data files we wanted to provide for the
course. Once everything was loaded and
tested we took a snapshot and saved it as
our workshop image. Before the workshop

- 5 -

starts on day 1, we’ll be launching one instance for each attending student. Each student will
then log into their own working instance in which they will follow along with the demonstrations
we’ll be showing.

Connecting to a running EC2 instance
Here is how to connect to your personal EC2 instance. You should have received an email from
which you can find your specific instance address. You should also have received the public key
file as an attachment to that email. You’ll need to save the key to your laptop and remember its
location. We suggest creating a WORKSHOP folder on your laptop’s desktop, and then saving
the key in that location. There will be several parts of the workshop that will involve
downloading data and running tools locally, on your laptop. For convenience we suggest
keeping all workshop related files inside this WORKSHOP folder on your desktop.

Launch your terminal program (MAC users can use ‘Terminal’, and WIN users can use
MobaXTerm). Then from inside that terminal run these commands

0.0.1 (MAC): cd /Users/<your_username>/Desktop
0.0.1 (WIN): cd /home/mobaxterm/Desktop

0.0.2: mkdir WORKSHOP
0.0.3: cd WORKSHOP

Save the PublicKey150713.pem file into this location now, then back in the terminal, change the
permission on the public key file

0.0.4: chmod 400 PublicKey150713.pem
!
0.0.5: ssh –YC –c blowfish-cbc,arcfour –i PublicKey150713.pem ec2-
user@<instance address>
*note: Replace “<instance address>” with your personal instance
address that was emailed to you

A special note for laptop users without access to mouse buttons, which will be needed to copy-
paste commands for many of the demonstrations. Here is how to enable ‘three button mouse’
clicking on a Mac
!
0.0.6 (MAC): pull XQuartz to the front
0.0.7 (MAC): Open the X11 menu and select ‘Preferences’
0.0.8 (MAC): Check the ‘Emulate three button mouse’ box
!
For Windows users, here is how to enable copy-paste via the right-click menu

0.0.6 (WIN): Select ‘configuration’ from the settings menu
0.0.7 (WIN): Select the X11 tab
0.0.8 (WIN): Set the Clipboard setting to ‘enabled’
*note: This will either be a drop menu or a checkbox for ‘Shared
clipboard’ that you need to check

- 6 -

Uploading and Downloading from an EC2 instance

Here is how to copy files from your laptop to the EC2 instance
!
scp –i <path to public key> <file on laptop> ec2-user@<instance
address>:<path to destination on EC2>

And here is how to copy files from the EC2 instance to your laptop
!
scp –i <path to public key> ec2-user@<instance address>:<path to file
on EC2> <path to destination on laptop>

You can also use scp to copy entire directories and their contents using the –r (recursive)
argument:

scp –r –i <path to public key> ec2-user@<instance address>:<path to
directory on EC2> <path to destination on laptop>

We have a couple of compressed tar files containing data files & resources you’ll need for later
sections of this class that need to be downloaded to your laptop. First open a 2nd terminal
window on your laptop, because we conveniently have the full address of the EC2 instance, its
easiest to do these copies while sitting on the laptop side of the cloud

0.0.9 (MAC): cd /Users/<your_username>/Desktop/WORKSHOP
0.0.9 (WIN): cd /home/mobaxterm/Desktop/WORKSHOP

Then use scp to download the wanted data files

0.0.10: scp –I PublicKey150713.pem ec2-
user@<instance_address>:~/WORKSHOP_RESOURCES/SECTION_2.tgz .
0.0.11: scp –I PublicKey150713.pem ec2-
user@<instance_address>:~/WORKSHOP_RESOURCES/SECTION_3.tgz .

Useful information:
(Amazon’s documentation on EC2) https://aws.amazon.com/ec2/
!

!

- 7 -

Section 1: Genome
Module 1: Sequencing platforms
!

In this module, we’ll introduce you to several of the sequencing platforms in use at our center
and we’ll look into what makes these systems unique, and what traits may be important to you
when you are deciding which platform(s) to use for your project. We’ll also talk about the
specific case of the data we’ll be using during the genomic section of this workshop. We’ll
describe the format in which it comes off the sequencing machine, and we’ll look at one method
we use for assessing the quality of raw data.

Illumina sequence-by-synthesis
The Illumina sequencers primarily use a sequence-by-synthesis approach, using fluorescently
labeled reversible-terminator nucleotides on clonally amplified DNA templates that are
immobilized on an acrylamide coating on the surface of a glass flowcell. As nucleotides are
incorporated onto the growing molecule attached to the flowcell, they release pulses of light that
are captured by the sequencer and processed to derive base sequence.

!
!

Pacific Biosciences (PacBio) sequencing
PacBio’s sequencing method is dubbed Single Molecule Real Time (SMRT) sequencing. DNA
polymerase molecules, bound to a dna template, are attached to the bottom of 50nm wells
termed Zero-Mode Waveguides (ZMWs). Each ZMW is small enough to see a single nucleotide
being incorporated by the bound polymerase. Each of the four bases is attached to a unique

- 8 -

fluorescent dye, and when a nucleotide is incorporated the fluorescent tag is released and
diffuses away from the observable area in the ZMW. A detector watches these fluorescent
signals are records the fluorescence to determine the base incorporated. These fluorescences
and their intensity are recorded over time, and these kinetics are used to calculate the base
sequence.
!

!
!
!
Comparing capabilities
Each of these systems brings unique strengths to the table, and careful thought should go into
your choice of sequencing platform for any given project.

For example, the Illumina platform (HiSeq2500 1T) is good for de novo genome sequencing if
large insert size libraries used to facilitate scaffolding. However, in case of highly repetitive
genomes, polymorphic genomes, or sequencing a population of individuals, the short Illumina
reads would not provide optimal results. In such cases, one would need to use long read
sequencing platforms such as the PacBio sequencers, and generate de novo PacBio assembly
or hybrid Illumina/PacBio assembly. Illumina platforms are suitable for cost-effective re-
sequencing of isolates if a reference genome is already available and the rapid run of
HiSeq2500 (27hrs vs 6 days) or MiSeq (21 days) could be used (depending on the amount of
sequence data needed to be generated) as a time-efficient platform.

Data used in ‘Section 1: Genome’
The data we’ll be using for the genomic section of the workshop is from the pig whipworm
Trichuris suis which was chosen for its relatively small size compared to other worm genomes
(~80Mb). For expediency’s sake, some of the demonstrations will only use a subset of the full
dataset that would normally be involved in the genomic analysis of a standard helminth. We’ll
also fast-forward through some of the lengthier steps and simply move to finished data after
showing you how to start the programs involved in each step.
!

- 9 -

Getting data off the sequencing machine
Our T. suis data was sequenced on a HiSeq 2000 machine. That machine (as with all Illumina
platforms) first generates sequence data in a format called ‘Bcl’. Bcl is a binary format that
contains base calls and quality scores, but is only machine readable and not anything a typical
user will interact with directly. Illumina’s Real-Time Analysis (RTA) software calls and records
the series of cycle-specific cluster images per spot on the flowcell and converts that image data
into bases and quality values in the Bcl file. It then converts that Bcl file into paired end fastq
format using another Illumina program called ‘bcl2fastq’. These paired-end fastq files are the
starting point for our analysis.
!
An introduction to the Fastq format
While we plan to cover the common sequencing data formats in module 2 of this section, its
useful at this point to introduce the fastq data format.

Fastq is a plain-text-based file format that contains exactly four lines per sequence record. It
starts with a header line, followed by the nucleotide sequence. Then is typically a line containing
a plus sign (+), and finally a line containing encoded quality values:

@K5HV3:00029:00029
AAAAAGGGTAAAAACGATCGTCACAGG
+
AB>>(44*44;;:/:447444C765?@-

The sequence and quality lines must be of the same length (i.e. one quality value per base),
and the third line (beginning with a ‘+’) is allowed to contain test (sometimes you may see this
third line repeat the sequence header line after the starting plus sign). The quality values in line
4 are encoded such that each numeric value can be represented by a single character. This
coding involves converting these quality scores to ascii characters.

Fastq files only support nucleotide sequence data, the format is not meant to house amino acid
sequence. ‘Paired end’ fastq usually refers to a set of two fastq files with each file containing the
sequencing data for each end of each read fragment. Very importantly, these ends must be
ordered identically. There is an alternate form of paired end fastq in which the sequence of each
end of the read fragment are kept one after the other within a single fastq file. This format is
called ‘interleaved’ fastq.

Assessing the quality of newly generated fastq
We’ll use the program FastQC to check out the quality of the paired end fastq we’ll be using for
the next few modules of this section. The FastQC program works on fastq files (as well as sam
and bam files, which we’ll discuss in the next module) and runs a number of quality control
metrics we can use to assess sequencing data. Its important to remember that while FastQC
uses hard, fast rules to determine when to flag a quality metric with a warning or fail notice,
those warning and fail notices do NOT always mean your data is bad. A simple example of this
is if you have sequence data from a polyA primed sequencing library, FastQC will likely throw
up a fail flag for Kmer Content and possibly for Overrepresented Sequences because many
reads will have strings of the base ‘A’. You need to review FastQC results thoughtfully and with
awareness of the data you are checking.

Here is how to run FastQC:
!
1.1.1: cd ~/WORKSHOP_RESOURCES/Section_1/module_1/QC_sequence_output

- 10 -

1.1.2: mkdir FASTQC_OUTPUT
1.1.3: fastqc –o FASTQC_OUTPUT –extract –f fastq raw_data/6p_7kb_TSAC-
Adult1-g846_g847.1.raw.fastq.gz raw_data/6p_7kb_TSAC-Adult1-
g846_g847.2.raw.fastq.gz
!
Here is how to view the results
!
1.1.4: chrome FASTQC_OUTPUT/6p_7kb_TSAC-Adult1-
g846_g847.1.raw.fastq.gz/fastqc_report.html
1.1.5: chrome FASTQC_OUTPUT/6p_7kb_TSAC-Adult1-
g846_g847.2.raw.fastq.gz/fastqc_report.html
!
Useful information:
(IUPAC code) http://www.bioinformatics.org/sms/iupac.html
(Illumina HiSeq 2000 information)
http://www.illumina.com/documents/products/datasheets/datasheet_hiseq2000.pdf
(Illumina MiSeq information)
http://www.illumina.com/documents/products/datasheets/datasheet_miseq.pdf
(PacBio RS II information) http://www.pacificbiosciences.com/products/
(FastQC) http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
!

Section 1: Genome
Module 2: Sequence data files
!

This module will be a review of the common formats used to store sequencing data. We’ll look
at: fasta, fastq, sam & bam. You will also be introduced to the Picard & Fastx toolkits and shown
how to convert between these formats.

Fastq
We’ve already discussed the fastq data format above. Just as a reminder, this is a four-line-per-
sequence-record, nucleotide-only data format that provides both base sequence as well as
quality in a single file. Commonly this format will house paired-end data, with the read from each
end of the DNA fragments housed in separate, paired fastq files.

Fasta
One of the most common sequence formats out there, fasta files, are simple text files with each
sequence record represented by a header line, and then a variable number of lines containing
the sequence data itself. The header lines must begin with the greater-than symbol (>), and
after that the line is relatively free-form. Be aware that many programs will only recognize the
first white-space delimited word on the header and use that as the identifier for that sequence.
For this reason, you will often find the sequence IDs as the first string on these header lines.
The sequence section of the fasta format is free-form. Sequence data is often listed using a
fixed number of bases per line, but its completely valid to put an entire genome’s worth of
sequence on a single line. Some older fasta files used to split the sequence lines with a blank
every 10 characters to help make longer sequences more human-readable. You can’t make
many assumptions about the specific format you will see inside a fasta file. The only safe
assumption is that every sequence record will be separated by a header line:

- 11 -

>gi|5524378|gb|AAD44166.1| Cytochrome b [Elephas maximus maximus]
ATGATGATGATGATGATGAAGACAAGGTGAGCCTAAGTAAAACTATCAAA
CGACGTCAATCAATACTTCTGTGAGGTGCGTTACGTAATCAATCAAGCAA
TAATATGATAGAGGTGGATCAAAACGATTTCAAATTGCGCTAACAAAGAG
TTAATGCTTCTTCTTATCCT

The fasta format is valid for both nucleotide and protein data.

Sam (and Bam)
The sam format (Sequence Alignment/Map) is an information rich data format for hosting
nucleotide (-only) base and quality values. This format also supports the storage of alignment
information, but can be used as a simple sequence data format as well. The sam format
consists of 11 tab-delimited columns per sequence record (or several lines worth of 11 columns
for sequence alignment data in which the same sequence maps to multiple things), as well as a
number of header lines. For sequence only sam files (no alignments), there will usually be very
few header lines, but for sam files hosting alignment information, there will be at least one
header line per reference used in the mapping. These alignment sam files tend to have many of
these header lines, so it may be useful view the sam file without the headers (I’ll show you how
to do this in a bit).

The columns in a sam file are setup to contain a lot of information:
!

!
Much of this complexity is in place to support the storage of alignment information. If you are
dealing with sam as a format solely for hosting sequence data, the important columns are the
QNAME, SEQ and QUAL columns (columns 1, 10 and 11 respectively). !

The bam file format is often mentioned interchangeably with the sam file format. A bam file is
simply the binary (compressed) version of a sam file. It is convenient to keep sam files in their
compressed bam format to save space. In fact, many programs prefer bam as input over sam
files. The samtools package provides a number of convenient tools for manipulating sam and
bam files.

Converting between formats
Here is how to view the contents of a bam file (with headers):
!
samtools view –h <bam>
!

- 12 -

Here is how to view it without headers:
!
samtools view <bam>
!
Here is how to convert a sam file into a bam file:
!
samtools view –bSh –o <bam output> <sam input>
!
Here is how to convert a bam file back into sam:
!
samtools view –h <input bam> > <output sam>
!
Next, we’ll practice some ways to convert between fastq, fasta and sam/bam using the Picard
and Fastx bioinformatics toolsets. First, we’ll create a sorted bam file from a set of paired end
fastq files using the Picard toolset
!
1.2.1: cd
~/WORKSHOP_RESOURCES/Section_1/module_2/Convert_between_formats
1.2.2: java -jar ~/bin/picard.jar FastqToSam F1=raw_data/6p_7kb_TSAC-
Adult1-g846_g847.1.raw.fastq.gz F2=raw_data/6p_7kb_TSAC-Adult1-
g846_g847.2.raw.fastq.gz SAMPLE_NAME=6p_7kb_TSAC-Adult1-g846_g847
SORT_ORDER=queryname OUTPUT=6p_7kb_TSAC-Adult1-
g846_g847.PE.name_sorted.bam

Here we introduce the idea of the ‘sorted’ bam file. A sorted bam file is simply a bam file that
has been sorted either by ‘name order’ or by ‘coordinate order’. Coordinate order sorting is
meant for alignment bam files. It re-orders the sequence records within the bam file based on
their alignment positions to each reference piece, with the references themselves being ordered
alphabetically. Note that if you coordinate sort a bam file that is not aligned, it will work but the
ordering will not be correct. Name ordering is the only valid ordering for alignment-free bam
files, and it simply orders the sequences based on their names.
Here is how to extract paired end fastq from a bam file:

1.2.3: java -jar ~/bin/picard.jar SamToFastq INPUT=6p_7kb_TSAC-Adult1-
g846_g847.PE.name_sorted.bam F=6p_7kb_TSAC-Adult1-
g846_g847.end1.new_fastq F2=6p_7kb_TSAC-Adult1-
g846_g847.end2.new_fastq
!
Here is how to extract fasta from fastq using the Fastx toolset:
!
1.2.4: fastq_to_fasta –i 6p_7kb_TSAC-Adult1-g846_g847.end1.new_fastq –
o 6p_7kb_TSAC-Adult1-g846_g847.end1.new_fasta
!
Useful information:
(Bam/Sam specification) https://samtools.github.io/hts-specs/SAMv1.pdf
(Picard Tools) http://broadinstitute.github.io/picard/command-line-overview.html#Overview
(Fastx toolkit) http://hannonlab.cshl.edu/fastx_toolkit/
!

- 13 -

Section 1: Genome
Module 3: Analytical processing of sequences
!

In this module, we’ll demonstrate typical steps involved in processing raw sequence data from
the HiSeq 2000 platform to an analysis-ready state for assembly. This tutorial will be done on a
subset of the T. suis data that will be used in the full assembly. In a real world usage case you’d
most likely be running this process on multiple pairs of fastq files.
!
Why data is not analysis-ready directly off the sequencing machine
Raw sequence-data from a sequencing machine is technically capable of being used directly in
most downstream analyses, but there are a number if factors that make that very ill advised.

Sequencing adapters
To prepare DNA material for sequencing, a sequencing library must be made. In our example
case, we used the TruSeq genomic library preparation kit for the HiSeq 2000. The DNA sample
is first fragmented into pieces roughly 200bp in length. Then TruSeq universal adapters and a
specific version of the TruSeq index adapter are ligated onto each end of the fragments via a
single base (A) overhang.
!

The adapter–DNA fragment
complex is then denatured and
amplified to produce a final
product containing the DNA
insert, end-specific sequencing
primers on either end, as well as
a specific index for use in
identifying this library out of a
pool of libraries.!

These TruSeq sequence
adapters are normally not visible
in the final, sequenced product,
because the sequencing primers
are immediately adjacent to the
DNA insert. However, if some
fraction of the DNA inserts are
shorter than the expected length,
it is possible that sequencing
can go all the way across the
insert and read into the adapter
sequence on the far end. Many
of the analyses we typically want
can be negatively affected by
having adapter sequence left
within the reads. It decreases
mapping efficiency, confuses

assemblies, etc. It is a good practice to identify and trim off any adapter sequence that may be
present in your reads.

- 14 -

Low sequence quality
During sequencing, each called base is typically assigned a quality score that refers to the
likelihood that the base was correctly called by the sequencer. The common value used to
represent these per-base confidences is the Phred score.

Q = -10 * log10 P
Q ! Phred score
P ! probability of an error occurring
Eg. Phred 20 implies that you are likely to see 1 error per 100 bases, Phred 30 implies 1 error
per 1000 bases, Phred 40 implies 1 error per 10000 bases
!
Poor quality sequence can interfere with downstream analysis as seriously as untrimmed
adapters. It makes mapping less reliable, confuses assemblers, and is a major impediment to
variant calling. As with adapter sequence, it is a good practice to trim off low quality sequence
that may be present in your reads.

Length filtering
After trimming reads for adapter and low quality, its possible that some of the reads have been
cut down to a very short size. We typically apply a length filter requiring that after the above
trimming there be at least 60 bases of read left, otherwise we discard the sequence as a ‘short
read’. Note that the 60bp threshold is the value we will use for the T. suis dataset. If your reads
are shorter or longer, you may need to adjust that cutoff.

Low sequence complexity
These are regions that have an unusual composition that can create problems in sequence
similarity searching (as well as other kinds of analyses). These regions contain low information
content and can be ‘sticky’ during alignments. It is a good practice to filter your sequence data
for low complexity regions before running downstream analysis.

Contaminant filtering
Finally, we filter our reads to remove contaminant. By contaminant, we mean any read whose
source is not what we expect (in our case, our reads should originate from T. suis). Typical
sources of contamination are:

Host, bacteria, other (environmental contaminants). Also, for RNA-Seq work, it is often common
to filter for 18/16s ribosomal data. This is because the amount of ribosomal sequence present
can sometimes dwarf the amount of actual expressed transcript amongst your reads. So it is
helpful for downstream analysis to get rid of it.

For this demonstration, we’ll be screening for host contaminant only, in this case from pig. In
general, you will want to pick and choose the contaminant db’s you’ll use based on the situation
of each project. To save compute resources, we only want to screen for contaminants we
expect might be a problem.

Finally, be aware that contamination screening should be done after filtering out adapters, low
quality and low complexity sequence. Those earlier issues, if left unfixed, can impede the
identification of a read as contaminant.
!
Discard both ends or only one?

- 15 -

One thing that must be considered when filtering and screening your data is whether to discard
both ends of a paired end set, or only one. Because most sequence data generated is actually
sequence from both ends of a single DNA insert, you need to think about whether a problem
seen on one end should be considered to apply to both ends or not. In general, issues with
adapter, sequencing error, and low complexity are not issues that necessarily affect both ends
of a sequence insert. In those cases, we usually will just discard the problem end and retain the
other. In the case of one end being identified as a contaminant, we normally will consider both
ends contaminants and discard them both.
!
Processing raw reads into an analysis-ready
state
Now we’re going to walk through typical steps
we’d use to prepare our T. suis reads for
assembly. To do this we need to accomplish
these things:

a) remove any adapters that may have
been introduced during sequencing
library preparation

b) remove low quality, terminal regions
c) apply a length filter to remove short

reads after trimming
d) remove reads of low sequence

complexity
e) remove reads that originate from host

organism

We’ll use the program Trimmomatic for
adapter removal, quality trimming and length
filtering. The filter_by_complexity script from
the seq_crumbs package will remove reads of low sequence complexity, and we’ll use the
Bowtie2 aligner to map the trimmed reads against a host database. Between these steps some
file manipulation is required to get the sequences into the format needed for the next step. This
data shuffling will be done using parts of the samtools & KHMER packages, as well as some old
fashioned command line unix.

The analysis-ready output
This processing will result in a set of paired end fastq, and an extra fastq of orphaned reads
whose mates were discarded (due to filtering steps that removed only a single end from a pair).
This process can be messy on a technical level due to the need to convert data between the
bam & fastq formats, and the need to keep the paired-end data synchronized and free of
orphans. In practice, we would normally assemble all these steps into a single pipeline script.
For the purposes of this demonstration, we’ll walk through each step manually.

Be aware that there are alternatives to the software we’re showing for most of these steps. The
programs we’re using are generally robust, but you may want to experiment with other options
for your data. No tool does a perfect job, and you may be able to find tools that perform better or
more efficiently for your specific dataset.

Finally, it’s often reasonable to simply work only with paired end data, and discard the small
fraction of orphaned reads generated at each step. This simplifies the process at the expense of

- 16 -

a small fraction of your reads. This is actually a fairly common practice, especially if you find
yourself doing an extra hour of coding work to preserve a few thousand reads out of 200 million
reads.
!
Processing the data
Here are the steps involved in running Trimmomatic and preparing the output for the next step.
This step trims off adapter, quality trims and filters the trimmed reads based on length.
!
1.3.1: cd
~/WORKSHOP_RESOURCES/Section_1/module_3/Processing_genomic_data_to_cle
aned_state
1.3.2: java -jar ~/bin/trimmomatic-0.33.jar PE -threads 8 -phred33 -
trimlog TRIMLOG.txt raw_data/6p_7kb_TSAC-Adult1-
g846_g847.1.raw.fastq.gz raw_data/6p_7kb_TSAC-Adult1-
g846_g847.2.raw.fastq.gz 6p_7kb_TSAC-Adult1-g846_g847.PE_end1.fastq
6p_7kb_TSAC-Adult1-g846_g847.ORPHANS_end1.fastq 6p_7kb_TSAC-Adult1-
g846_g847.PE_end2.fastq 6p_7kb_TSAC-Adult1-
g846_g847.ORPHANS_end2.fastq
ILLUMINACLIP:databases/TruSeq_adapters.fna:2:30:10 SLIDINGWINDOW:5:20
LEADING:20 TRAILING:20 MINLEN:60
1.3.3: cat 6p_7kb_TSAC-Adult1-g846_g847.ORPHANS_end1.fastq
6p_7kb_TSAC-Adult1-g846_g847.ORPHANS_end2.fastq >
Tsuis_genomic_7kb_insert.trimmomatic_ALL_ORPHANS.fastq
1.3.4: java -jar ~/bin/picard.jar FastqToSam F1=6p_7kb_TSAC-Adult1-
g846_g847.PE_end1.fastq F2=6p_7kb_TSAC-Adult1-g846_g847.PE_end2.fastq
SAMPLE_NAME=Tsuis_genomic_7kb_insert SORT_ORDER=coordinate
OUTPUT=Tsuis_genomic_7kb_insert.trimmomatic_PE_coord_sorted.bam
1.3.5: java -jar ~/bin/picard.jar SamToFastq
INPUT=Tsuis_genomic_7kb_insert.trimmomatic_PE_coord_sorted.bam
INTERLEAVE=true
FASTQ=Tsuis_genomic_7kb_insert.trimmomatic_PE_interleaved.fastq

Next we filter out low complexity data using filter_by_complexity from the seq_crumbs package,
and then prepare the output for the final Bowtie2 mapping step
!
1.3.6: filter_by_complexity -o
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.brokenPE_interleav
ed.fastq --paired_reads --fail_drags_pair False
Tsuis_genomic_7kb_insert.trimmomatic_PE_interleaved.fastq
1.3.7: filter_by_complexity -o
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.ORPHANS.fastq
Tsuis_genomic_7kb_insert.trimmomatic_ALL_ORPHANS.fastq
1.3.8: source /home/ec2-user/bin/KHMER/khmerEnv/bin/activate
1.3.9: extract-paired-reads.py -f
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.brokenPE_interleav
ed.fastq
1.3.10: deactivate

- 17 -

1.3.11: cat
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.ORPHANS.fastq
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.brokenPE_interleav
ed.fastq.se >
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.ALL_ORPHANS.fastq
1.3.12: paste - - - - - - - - <
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.brokenPE_interleav
ed.fastq.pe | tee >(cut -f 1-4 | tr "\t" "\n" >
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.PE_end1.fastq) |
cut -f 5-8 | tr "\t" "\n" >
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.PE_end2.fastq

Finally, we will map the cleaned reads against a host database, pig in this case, and remove all
reads and read pairs that have either end detected as a contaminant. We’ll use Bowtie2 for this
mapping, and we’ll prepare the final, cleaned & contaminant free data for assembly
!
1.3.13: bowtie2-build Sus_scrofa.Sscrofa10.2.dna_rm.toplevel.fa
Sus_scrofa.Sscrofa10.2.dna_rm.toplevel
1.3.14: bowtie2 -q -x databases/Sus_scrofa.Sscrofa10.2.dna_rm.toplevel
-1 Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.PE_end1.fastq -
2 Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.PE_end2.fastq -S
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
sam
1.3.15: bowtie2 -q -x databases/Sus_scrofa.Sscrofa10.2.dna_rm.toplevel
-U
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.ALL_ORPHANS.fastq
-S
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.sam

1.3.16: samtools view -bSh -o
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.bam
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.sam
1.3.17: samtools sort
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.bam
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.sorted
1.3.18: bamtools filter -in
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.sorted.bam -out
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.ORPHANS.
bam -isMapped false
1.3.19: java -jar ~/bin/picard.jar SamToFastq
INPUT=Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.OR
PHANS.bam
FASTQ=Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.OR
PHANS.fastq

- 18 -

1.3.20: samtools view -bSh -o
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
bam
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
sam
1.3.21: samtools sort
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
bam
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
sorted
1.3.22: bamtools filter -in
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
sorted.bam -out
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.PE.bam -
isMapped false -isMateMapped false
1.3.23: java -jar ~/bin/picard.jar SamToFastq
INPUT=Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.PE
.bam
FASTQ=Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.PE
_end1.fastq
SECOND_END_FASTQ=Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.h
ost_free.PE_end2.fastq

Evaluating our analysis-ready data
Now that we’ve processed our data to an analysis-ready state, lets run FastQC again on the
final output and compare it back to the FastQC results from the original, raw data
!
1.3.24: cd /home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_3/Processing_genomic_data_to_
cleaned_state
1.3.25: mkdir FASTQC_OUTPUT
1.3.26: fastqc –o FASTQC_OUTPUT –extract –f
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.PE_end1.
fastq
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.PE_end2.
fastq
!
We’ll then use the chrome browser (as before) to compare the final paired fastq files to the
original, raw paired fastq files.
!
Useful information:
(Trimmomatic) http://www.usadellab.org/cms/?page=trimmomatic
(Bowtie2) http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
(seq_crumbs) https://bioinf.comav.upv.es/seq_crumbs/available_crumbs.html
(bamtools) https://github.com/pezmaster31/bamtools!
!

- 19 -

Section 1: Genome
Module 4: Genome assembly

There are a lot of choices when deciding on a genome assembler. Considerations include the
predicted genome size, the technology type, and the cost (computational, and paying for the
assembler). Today’s demonstration will be using ALLPATHS-LG, which is a de Bruijn Graph
assembler for large genomes. ALLPATHS-LG requires paired end reads from at least one
fragment and one jumping library sequenced on the Illumina platform. The use of multiple
libraries enables ALLPATHS-LG to build a higher quality assembly. When using ALLPATHS_LG,
our recommended sequence coverage requirements are: 45x fragments, 45x 3-8kb and 10x-
20x lrg insert ie. 5kb+. In our assembly, we will be using 11,898,407 fragment read pairs,
4,960,173 3kb read pairs and 2,975,142 7kb read pairs

ALLPATHS-LG requires a specific format for input sequence data files in order to run the
assembler. PrepareAllPathsInputs.pl, an ALLPaths script, will be run after we begin by setting
up two dependency files:

Dependency File #1: in_groups.csv

100,Illumina_011,/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data/13p_fra
gment.*.trimPaired.fastq.gz
200,Illumina_012,/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data/33p_3-
5kb_.*.trimPaired.fastq.gz
300,Illumina_013,/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data/6p_7kb.
*.trimPaired.fastq.gz

Notes: This file does not require a header with each field type.
Group name: unique name for data set (free form)
Library name: library name for data set (free form but good practice to use some identifying
nomenclature)
File name: absolute path to data file. Wildcard characters * and ? are accepted in the name of
the file but NOT the file extension.
Supported extensions are .bam, .fasta, .fa, .fq, .fastq.gz, and fq.gz (all case specific). Also, if
you use .fasta or .fa, the script expects a corresponding .quala or .qa file to exist for each
respective file.

Dependency File #2: in_libs.csv

library_name,project_name,organism_name,type,paired,frag_size,frag_std
dev,insert_size,insert_stddev,read_orientation,genomic_start,genomic_e
nd
Illumina_011,Awesome,T.suis,fragment,1,205,10,,,inward,,
Illumina_012,Awesome,T.suis,jumping,1,,,7475,500,outward,,
Illumina_013,Awesome,T.suis,jumping,1,,,2833,500,outward,,

- 20 -

Notes: Every field is required in this file. A header is used, and each field must be represented
in the data entered (a comma separated field can be left blank; see example above).
Library_name: must match same field in in_group.csv
Project_name: free form name
Organism_name: organism
Type: informative field only ie fragment, jumping EcoP15, etc.
Paired: 0 = unpaired reads; 1: paired reads
Frag_size: average # of bases in the fragment library
Frag_stddev: estimated standard deviation of the fragment sizes
Insert_size: average # of bases in the jumping library inserts (if larger than 20kb the library is
considered Long Jumping)
Insert_stddev: estimated standard deviation of the insert sizes
Read_orientation: inward or outward
Genomic_start: index of the FIRST genomic base in the reads. If not zero, then all bases before
the genomic start will be trimmed off
Genomic_end: index of the LAST genomic base in the reads. If not zero, then all bases after
the genomic end will be trimmed off

With these two files prepared, you can now run:

1.4.1: PrepareAllPathsInputs.pl DATA_DIR=/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data
PLOIDY=2

Other optional settings include:

PICARD_TOOLS_DIR (use version 1.101) if you are using .bam files in the .csv files made
above.
INCLUDE_NON_PF_READS=1 allows you to use the orphan reads kept in the previous module.
GENOME_SIZE, FRAG_COVEAGE, JUMP_COVERAGE, and LONG_JUMP_COVERAGE
used together you can set the desired coverage percentage based on the estimated size set for
GENOME_SIZE

Now we can start the assembly:

1.4.2: RunAllPathsLG PRE=/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4 REFERENCE_NAME=Tsuis
DATA_SUBDIR=all_path_data RUN=myrun SUBDIR=attempt1

Notes: All of the ALLPATHS arguments are to set the pipeline directory names. If your
ALLPATHS run fails at any point, you can troubleshoot the issue and then restart ALLPATHS
and it will restart on the stage that failed (as long as you don’t delete any of the directories/data
that was produced up to that point).
Use the following command which adds “OVERWRITE=True”:

1.4.3: RunAllPathsLG PRE=/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4 REFERENCE_NAME=Tsuis
DATA_SUBDIR=all_path_data RUN=myrun SUBDIR=attempt1 OVERWRITE=True

This assembly took 5.3 hours. When the assembly finishes it will be found at the following
location:

- 21 -

/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data/myrun/ASSEMBLY/
attempt1/final.assembly.fasta

Useful information:
ftp://ftp.broadinstitute.org/pub/crd/ALLPATHS/Release-LG/AllPaths-LG_Manual.pdf

Quality Assessment
Assembly improvement and QC of de novo assemblies go hand in hand since high-quality draft
genomes lead to more successful and accurate annotation. We use a combination of CEGMA,
N50, and RNA mapping to assess the quality of an assembly.

CEGMA (Core Eukaryotic Genes Mapping Approach) uses a defined set of 458 single-copy,
conserved eukaryotic genes, and searches for orthologs of these proteins in the de novo
genome assembly. Since these proteins are conserved across eukaryotes ranging from yeast to
plants to humans, the completeness of this protein set in a draft genome is a useful indicator of
the genome quality. CEGMA produces a completeness report, but we prefer to parse the
cegma.gff file against the core proteins to get a count of the CEGs (Core Eukaryotic Genes) and
lcCEGs found in the assembly.
!
1.4.4: cegma --genome final.assembly.fasta -threads 8 &

N50 is a basic statistic for
describing how contiguous an
assembly is. The longer the
N50 is, the better the assembly.

RNA mapping looks at the
percent of gene contained within
the assembly

Assembly Improvement
After assessing an assembly,
we can take advantage of
numerous assembly
improvement tools. Two open
source options that we use are
GapFiller and PBJelly. PBJelly
(part of PBSuites) is able to fill
gaps and merge scaffolds
utilizing long reads (which is
particularly useful for PacBio
data). For this project, we do not
have any available PacBio data,
so we will be utilizing GapFiller
instead. The image below
illustrates how GapFiller fills the
contig gaps:

- 22 -

We will start by creating the libraries.txt file:

Libraries File: libraries.txt
lib100 bowtie
/gscmnt/gc2546/mitrevalab/research/t_suis_class/25p_fragment_lib_TSAC-
Adult1-g846_g847.1.raw.fastq
/gscmnt/gc2546/mitrevalab/research/t_suis_class/25p_fragment_lib_TSAC-
Adult1-g846_g847.2.raw.fastq 205 0.3 FR
lib200 bowtie /gscmnt/gc2546/mitrevalab/research/t_suis_class/65p_3-
5kb_TSAC-Adult1-g846_g847.1.raw.fastq
/gscmnt/gc2546/mitrevalab/research/t_suis_class/65p_3-5kb_TSAC-Adult1-
g846_g847.2.raw.fastq 7475 0.5 RF
lib300 bowtie
/gscmnt/gc2546/mitrevalab/research/t_suis_class/12p_7kb_TSAC-Adult1-
g846_g847.1.raw.fastq
/gscmnt/gc2546/mitrevalab/research/t_suis_class/12p_7kb_TSAC-Adult1-
g846_g847.2.raw.fastq 2833 0.5 RF

Notes:
Library Name: free form
Mapper: bowtie or bwa
Path to both mate pairs files
Insert size
Error
Read orientation

We then run GapFiller using:

1.4.5: GapFiller.pl -l libraries.txt -s final.assembly.fasta -T 8 -b
Tsuis -i 5

Notes: –l is the file made above; –s assembly file; –T threads; –b directory and root file name; –i
iterations. Runtime varies based on number of gaps and amount of data used

Useful links:
http://korflab.ucdavis.edu/datasets/cegma/README

Section 1: Genome
Module 5: Genome annotation

“A beginner’s guide to eukaryotic genome annotation”
http://www.nature.com/nrg/journal/v13/n5/full/nrg3174.html is a great resource. The first step
when annotating a genome is to identify repeat sequences, because they can interfere with
gene predictors and evidence alignment.

Masking repeats
Tandem Repeat Finder (TRF): Start by using TRF to mask short interspersed tandem repeats:

- 23 -

1.5.1: trf Tsuis.gapfilled.final.fa2 7 7 80 10 50 500 -d -m -h >>
TRF.stdout

Now we need to create a blast database for RepeatModeler:

1.5.2: makeblastdb -in final.assembly.fasta.2.7.7.80.10.50.500.mask -
dbtype nucl

Running RepeatModeler (run time is 24-36 hours):

RepeatModeler -database Tsuis.gapfilled.final.fa.masked.fasta >>
RM_stdout

Repeatmodeler will create an RM_[PID].[DATE]/ directory,
(e.g. RM_10825.ThuAug271528572015/)

Once RepeatModeler has completed, you will need to QC the output to check for repeats that
are really genes (gene families) or RNA features.

The following are the screening steps for QC:

Blastx vs nr for protein coding genes:

1.5.3: blastx nr consensi.fa.classified E=10e-5 -o
consensi.fa.classified.nrcheck.blast.out

Blastn vs RNA database for ribosomal or other RNA genes (Rfam.fasta comes with the Rfam
download):

1.5.4: blastn Rfam.fasta consensi.fa.classified 10e-5 -o
$1.rnacheck.blast.out

Retrotransposon check:

1.5.5: blastx transposonDb consensi.fa.classified E=10e-5 -o
$1.retrocheck.blast.out

The final file output from RM is consensi.fa.classified file in the RM directory
(e.g. .M_10825.ThuAug271528572015/consensi.fa.classified). We then screen the blast.out
files with tools that look at P >=0.01 identity/coverage (50% PID/20% Identity) and naming that
is known to be acceptable and database types that lead us to believe the protein has been
checked:

"unknown", "hypothetical", "oxidase", "histone", "kinase", "protease", "reductase", "RNA",
"synthase", "ATPase", "phosphatase", "cytochrome", "ribosomal", "titin", "extensin", "abductin",
"tRNA", "drosophila", "nucleosome", "transferase", "unnamed", "polyprotein", "putative",
"peptide", "resolvase", "alpha", "beta", "fusion", "lactamase", "galact", "integrase", "ref", "emb",
"dbj", "gb", "pir", "prf", "sp", "pdb", "intron","synthetase"

1.5.6: mkdir RepeatMasker
1.5.7: cd RepeatMasker

- 24 -

1.5.8: RepeatMasker -lib repeats.lib
trf.masked.fasta >>RepeatMasker.stdout

Note: The input sequence can be split into chunks to expedite.

RepeatMasker outputs the following files:
D918.newname.fsa.masked - Masked fasta
D918.newname.fsa.tbl - Summary table gives total %masked and breakdown of types
D918.newname.fsa.log - run output
Other output files with details of repeats/positions etc.
D918.newname.fsa.cat D918.newname.fsa.out D918.newname.fsa.ref

Useful links:
https://tandem.bu.edu/trf/trf.html
http://www.repeatmasker.org/RepeatModeler.html
http://www.repeatmasker.org/webrepeatmaskerhelp.html

We also annotate non-coding RNAs using the Rfam and tRNA scan. We mask these predictions
before running the predictor programs, in order to further simplify the regions the predictors
have to look at.

Rfam - http://nar.oxfordjournals.org/content/43/D1/D130

1.5.9: rfam_scan -f tab -o Rfam.out File.fasta

-f specifies format
-o specifies output location
The last argument is just the sequence file to use

Notes: For rfam scan, we modified the script so that it skips the rare group II introns, because if
greatly reduces the run time.

We can scan a sequence file for tRNAs using tRNAscan, EufindtRNA & tRNA covariance.

tRNAscan - http://lowelab.ucsc.edu/tRNAscan-SE/Manual

1.5.10: tRNAscan-SE -o tRNAscan.output File.fsa

Annotation
Producing gene predictions to produce a high quality final set of gene annotations.

- 25 -

A beginner's guide to eukaryotic genome annotation. M Yandell & D Ence Nature Reviews Genetics 13, 329-342 (May 2012).

We will perform annotation using Maker (M. Yandell et. al., 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2134774/pdf/188.pdf

First, we generate config files for Maker:

1.5.11: maker -CTL

This creates 3 default config files:

maker_bopts.ctl : blast type and cut-off
maker_exe.ctl : program paths
maker_opts.ctl : all other parameters

The -CTL option will give you default parameters. You will need to set up paths in each file to
match the system you are on (paths to blast databases, etc). For our maker runs, we only need
to do the -CTL once, and then we copy the ctl files to the new directories so we don't have to
update paths for blast exe's etc. We only need to change the maker_opts.ctl file for blast db's.

- 26 -

Change any parameters and/or paths which are different from the working copy, including:

path to sequence file
protein database path
EST database path
alt-est database path if needed
ab initio predictors being run
ab initio corresponding model files
model_gff and/or pred_gff or other _gff files
evidence predictors

Open maker_opts.ctl and add path to these lines

Find this line:
#-----EST Evidence (for best results provide a file for at least one):

1.5.12: est= #set of ESTs or assembled mRNA-seq in fasta format

Beneath this EST Evidence section, also change:
#-----Protein Homology Evidence (for best results provide a file for at least one)

1.5.13: protein= #protein sequence file in fasta format (i.e. from
mutiple oransisms)

To run any of the predictors: Snap, Fgenesh, Augustus you need to train them. Fgenesh is a
commercial predictor that you would need to purchased, but snap is free and maker also works
with GeneMark and others, but those are the most common. We are not going to go perform
overpredictor training today.

To run maker:

1.5.14: maker --RM_off -g File.fasta maker_bopts.ctl maker_exe.ctl
maker_opts.ctl

Here is some information on the directory structure and the files that maker outputs:

Path/Maker

maker_bopt.ctl
maker_ext.ctl
maker_opts.ctl

GENOME.maker.output/ - contains all output for a given run of MAKER

maker_bopts.log : These are logs of the control files used for this run of MAKER
maker_opts.log
maker_exe.log

seen.dbm

- 27 -

sequnce_maker_length_99.db
sequnce_maker_length_99_master_datastore_index.log - log of MAKER run progress as well
as an index for traversing through the output

mpi_blastdb/ - Contains fasta indexes and error corrected fasta files built from the EST and
protein database provided by the user.

*.mpi.10/ - contains indexed database files
nematode_protein_new.mpi.10/ - contains indexed database files

<Sequence_name>._datastore/ - contains subdirectories that hold the output for each
individual contig of the input fasta file. See DATASTORE DIRECTORY STRUCTURE section in
README for more information

08/ 25/Contig#/ - first two directories; numbers/letters vary

run.log
<Sequence_name>.gff - a gff file that can be loaded into GMOD, GBROWSE, or Apollo
<Sequence_name>.maker.snap.proteins.fasta - a fasta file of ab-inito predicted protein
sequences from program

<Sequence_name>.maker.snap.transcripts.fasta - a fasta file of ab-inito
predicted transcript sequences from program

<Sequence_name>.maker.transcripts.fasta - a fasta file of the MAKER annotated transcript
sequences

<Sequence_name>.maker.proteins.fasta - a fasta file of the MAKER
annotated protein sequences

<Sequence_name>.maker.non_overlapping_ab_initio.proteins.fasta - a
fasta file of filtered ab-inito protein sequences that don't overlap maker annotations

<Sequence_name>.maker.non_overlapping_ab_initio.transcripts.fasta - a fasta file of filtered
ab-inito transcript sequences that don't overlap maker annotations

theVoid.Contig#/ - a directory containing all of the raw output files produced by MAKER,
including BLAST reports, SNAP output, exonnerate output and the masked genomic sequence.

- 28 -

Explaining GFF3 files

http://www.broadinstitute.org/annotation/argo/help/gff3.html

Field Descriptions (Note: Except for the last field [9], all gff flavors are the same):

1. seqname - The name of the sequence. Typically a chromosome or a contig. Argo does
not care what you put here. It will superimpose gff features on any sequence you like.

2. source - The program that generated this feature. Argo displays the value of this field in
the inspector but does not do anything special with it.

3. feature - The name of this type of feature. The official GFF3 spec states that this should
be a term from the SOFA ontology, but Argo does not do anything with this value except
display it.

4. start - The starting position of the feature in the sequence. The first base is numbered 1.
5. end - The ending position of the feature (inclusive).
6. score - A score between 0 and 1000. If there is no score value, enter ".".
7. strand - Valid entries include '+', '-', or '.' (for don't know/don't care).
8. frame - If the feature is a coding exon, frame should be a number between 0-2 that

represents the reading frame of the first base. If the feature is not a coding exon, the
value should be '.'. Argo does not do anything with this field except display its value.

9. GFF3: grouping attributes Attribute keys and values are separated by '=' signs. Values
must be URI encoded.quoted. Attribute pairs are separated by semicolons. Certain,
special attributes are used for grouping and identification (See below). This field is the
one important difference between GFF flavors.

Special Field 9 Attributes:

The first special thing about field 9 attributes is that they can be associated with transcripts.
Previous flavors of GFF restricted attributes to the lowest level subfeature (exons).

Any key=value attribute pair will be displayed by argo, but the following have special meaning:

1. ID - unique identifier for this feature.
2. Parent - identifier of parent feature.
3. Name - used as the feature label in the feature map.

Section 1: Genome
Module 6: Functional annotation

This module will review two standard methods for assigning functional annotations to a de novo
geneset. We’ll run a protein vs. protein alignment using the NCBI’s BLASTP+, and we’ll discuss
the interproscan program and take a look at typical interproscan output and how to make use of
it.

- 29 -

Using NCBI’s BLASTP+ to assign functional annotation

One common method of assigning a function to a set of de novo gene calls is simply by
mapping them to an already annotated set of genes from closely related organisms. We’ll go
over the details of actually running a blastp in a bit, but first we’ll review how to locate and
prepare a database for this mapping.

If you happen to have a highly conserved organism’s gene set handy that happens to already
be well annotated, you may not need to do anymore digging. For example, if you are working
with a non-parasitic nematode, you can’t do much better than to simply use the highly curated
and well annotated C.elegans gene set for this mapping. Bu t if you are working with an
organism not in that happy circumstance (as most of us are, all the time), the next best thing is
to walk the lineage of your species using GenBank’s Entrez Records which are avaible when
using a taxonomy search. Lets do this now:

1. Open a browser on your laptop
2. Go to the NCBI website at http://www.ncbi.nlm.nih.gov
3. Enter “Trichuris suis” in the search box at the top of the screen, and set the search menu

to “Taxonomy”, then click “Search”
4. Click through the “Trichuris suis” link
5. Notice the “Entrez records” table on the right side of the screen. What we want is to find

a level of taxonomy above our species for which GenBank has a good number of
“Protein” available

6. Click on the genus level link in the lineage (Trichuris)
7. Click the “Trichuris” link at the top of the list of species to get back to the “Entrez records”

table at that level in the taxonomy
8. Notice that GenBank has 48,510 proteins available for this taxa, click on the “48.510”

number which is a link that will prepare an output set of those proteins
9. Now we will download this protein set. Open the “Send to:” menu in the upper right

corner of the page
10. Choose Destination “File”
11. Set the Format to “Fasta”
12. Click on “Create File” to download the file

For the purposes of this workshop I’ve already prepared a somewhat smaller db for use in our
demonstration, which is already available in the EC2 instance (i.e. you don’t really need to
download the above). But the above process is very useful for when you don’t have a specific
protein db in mind, yet you want to assign blastp annotations to your gene set basic on
homology to related organisms.

Running NCBI’s BLASTP+

Now we’re going to actually map our gene set to our protein database and filter based on
alignment strength. First we need to prepare the blast database for use.

1.6.1: cd /home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_6/NCBI_Blast+/database
1.6.2: makeblastdb -in Ttrichuira_geneset.fna -dbtype prot

Next we can start the blastp alignment

- 30 -

1.6.3: cd /home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_6/NCBI_Blast+
1.6.4: blastp -db database/Ttrichuira_geneset.fna -query
Tsuis.protein.faa -num_threads 8 -outfmt 6 -max_target_seqs 1 -out
Tsuis_vs_Ttrichiura.raw_blastp.tsv

Then we would typically parse the results using some alignment scoring threshold to filter out
only the solid hits

1.6.5: awk '{if ($11<1e-05) print $0;}' <
Tsuis_vs_Ttrichiura.raw_blastp.tsv >
Tsuis_vs_Ttrichiura.raw_blastp.tsv.hits_at_1e-05
The output format we selected using the –outfmt 6 argument produces results in this tab-
delimited format:

Query id
Subject id
Percent identity
Alignment length
Mismatch count
Gap open count
Start of alignment in query
End of alignment in query
Start of alignment in subject
End of alignment in subject
E-value
Bitscore

The results at this point will provide associations between our de novo gene set and the genes
from our database. We would then use a lookup script to go back and extract the full line
annotations from our database and add them to our new genes. While we won’t cover that in
this workshop, we’d be happy to provide scripts for this on request after the class.

Interproscan

Interproscan is a program that searches a collection of databases and reports associations to all
these databases for each gene searched. For our purposes we are mainly interested in the IPR
and GO annotations provided by this software. But here is a full listing of what is searched:

PANTHER, PFAM, PIRSF, PRINTS, PRODOM, PROSITE, PROFILE, SMART, TIGRFAMs,
GENE3D, SSF, SWISSPROT, TREMBL, INTERPRO, GO, MEROPS, UniProt, HAMAP, PFAMB

Due to its resource intensive nature, and the size of the databases needed in its execution we
are not able to demonstrate this software live in our workshop. So we’ve short-cut this section
and deposited pre-built interproscan output for the T.suis gene set in the EC2 instance. First
lets take a look at the raw output

1.6.6: cd /home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_6/Interproscan
1.6.7: more trichuris_suis_interpro_results

- 31 -

That command will scroll through that file one page at a time. The length of each line will cause
the output to wrap on your screen, making it look messy. But the output of interproscan is
actually organized into tab-delimited columns:

1. Protein Accession
2. Sequence MD5 digest
3. Sequence Length
4. Analysis (i.e. the db that was searched on this line)
5. Signature Accession
6. Signature Description
7. Start location
8. Stop location
9. Score (i.e. usually the e-value of the match reported by member database method,

although sometimes a specific search engine will report a non- e-value based score)
10. Status
11. Date
12. InterPro annotations – accession (optional column)
13. InterPro annotations – description (optional column)
14. GO annotations (optional column)
15. Pathways annotation (optional column)

Parsing Interproscan results for downstream use

In order to prepare these annotations for downstream analysis (primarily the building of the
gene summary table, and the expression analysis that will be shown in Section 2) we need to
parse our raw interproscan output into a pre-arranged format that we typically use for that later
work. This requires the use of a locally generated perl script (that we’re happy to share on
request), and would normally build files for both GO and IPR annotations. As a demonstration
we’ll show how we use this script to generate the GO index

1.6.8: scripts/prepare_files_for_FUNC.no_parents.pl -iprscan_file trichuris_suis_interpro_results
-GO_description GO.terms_and_ids.obo.120531 -gene_fof tsuis_full_gene_list.txt -output
Tsuis.GO_annotatioN_index

If you ‘more’ the output file, you’ll see that this is a much simpler format than trying to work with
the native interproscan result file. This parsed annotation file will be used in Section 2 to help
populate the gene summary table in Excel. This format (3 simple columns) should be easy to
work with within the spreadsheet.

Useful information:
(NCBI BLAST+ UNIX tutorial) https://molevol.mbl.edu/wiki/index.php/BLAST_UNIX_Tutorial
(NCBI BLAST+ command line arguments) http://www.ncbi.nlm.nih.gov/books/NBK279675/
(Interproscan) https://github.com/ebi-pf-team/interproscan/wiki
(Interpro Db) https://www.ebi.ac.uk/interpro/about.html
(Gene Ontology) http://geneontology.org

- 32 -

Section 2: Transcriptome
Module 0: RNA isolation to sequence production

1)  Experimental design
2)  Library construction & sequencing

Experimental design

Resource: https://genome.ucsc.edu/ENCODE/protocols/dataStandards/ENCODE_RNAseq_Standards_V1.0.pdf,
http://gkno2.tumblr.com/post/24629975632/thinking-about-rna-seq-experimental-design-for

•  What’s the purpose?
•  Gene discovery
•  Differential expression

•  More reads = more confidence
•  Depth

•  Depends on genome size, coding features, etc.
•  More for discovery of novel features, low expression genes

•  Replicates
•  Biological, not technical
•  More is better for differential expression, 3 per condition

•  Collect appropriate meta-data when you collect your RNA
•  Strain/isolate/batch
•  Sex, age, patency
•  Treatments

- 33 -

Quality control of RNA sample
•  Nanodrop quantitation

•  Standard equipment
•  Peaks at particular

absorbance range can
signal contamination

•  Can’t distinguish between
DNA, RNA, free
nucleotides

•  Qubit fluorometric quantitation
•  Use separate kits to

measure RNA, DNA and
protein individually

•  Agilent bioanalyzer to assess
integrity
•  RNA integrity number

(RIN)

Production of Illumina RNAseq data

•  Assess quality & concentration
•  DNAse treatment
•  Poly(A) selection
•  Fragmentation
•  cDNA synthesis

•  oligo(dT) & random
hexamers

•  Library preparation
•  Sequencing

AAAAAA

AAAAAA
TTTTTT

TTTTTT

- 34 -

RNA-seq analysis overview

RNA sequencing and
read cleaning

RNA-Seq dataset(s) No genome
available

de novo transcriptome
assembly

Map RNA-Seq reads
to genome

Genome
available

Map RNA-Seq reads to
transcriptome

Isoform
reconstruction

Table of read counts
per transcript or gene

model

Table of read counts
per gene

Map RNA-Seq
reads to isoforms

Table of read
counts per isoform

or exon

Downstream analysis (differential gene expression,
clustering, PCA, functional enrichment, etc).

Read pre-processing and filtering: a very stringent protocol

1)  Adapter removal
2)  Quality trimming & filtering
3)  Contaminant filtering

Resource: http://www.nature.com/nprot/journal/v8/n8/pdf/nprot.2013.084.pdf, specifically Box 1

- 35 -

Our “test” dataset

•  Larval
•  10 days post

inoculation (dpi),
L2

•  16 dpi, L3
•  17 dpi, L3
•  21 dpi, L4

•  Adult
•  42 dpi, L5
•  Adult rep1
•  Adult rep2

Life cycle of Trichuris suis

Our “test” dataset

Resource: http://www.htslib.org/doc/samtools.html

•  Counting reads in a bam file
samtools view –b –c input.bam
•  Divide by 2 to get pairs!

•  Downsampling:
samtools view –b –s XX.XX –o output.bam input.bam

•  -b: input is bam format
•  -s: random down-sampling, integer before the decimal is seed for

random number generator, after the decimal is the % reads to maintain
•  -o: output file name

•  Convert bam ! fastq as before

L2_10d L3_16d L3_17d L4_21d L5_42d L5_r163 L5_r179 Total

Total raw pairs 43,592,929 54,459,409 47,371,505 58,231,629 55,800,467 32,809,672 41,902,924 334,168,535

Downsampled
raw pairs 4,435,622 5,511,063 4,817,349 5,891,002 5,644,329 3,337,590 4,258,806 33,895,761

300-500bp fragment

Read 1 ! " Read 2

- 36 -

Adapter detection

Resource: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

•  Use fastqc to identify any adapter sequences that may need to be clipped

NuGEN Ovation RNAseq System V2

Resource: http://www.nugen.com/sites/default/files/M01114_v4.1%20-%20User%20Guide,%20Ovation%20RNA
%20Amplification%20System%20V2.pdf

•  Single Primer Isothermal
Amplification protocol used in cDNA
synthesis
•  SPIA adapters linked to primers

•  Fragmentation following cDNA
synthesis, so most reads won’t have
SPIA

CTTTGTGTTTGA 5’ 3’

CTTTGTGTTTGA 5’ 3’

- 37 -

Adapter detection

•  Checking for adapters in your file:
grep –B 1 –A 2 –colour “^CTTGTGTTTGA” L2_10d.1.raw.fastq

•  To count sequences with an adapter
grep –c “^CTTGTGTTTGA” L2_10d.1.raw.fastq

Resource: http://linuxcommand.org/man_pages/grep1.html

Adapter removal

•  Tips:
•  Trimmomatic doesn’t work well for short adapter sequences
•  clipping multiple adapters in one pass may not work well

•  Other options for adapter trimming:
•  Flexbar: http://sourceforge.net/p/flexbar/wiki/Manual/

•  Adapter detection & removal
•  Barcode detection, removal and read binning
•  Filtering reads with uncalled bases
•  Quality trimming and filtering
•  Length trimming / filtering

•  Cutadapt: https://pypi.python.org/pypi/cutadapt/
•  FASTX-Toolkit: http://hannonlab.cshl.edu/fastx_toolkit/seq
•  Seq_crumbs toolkit: https://bioinf.comav.upv.es/seq_crumbs/

- 38 -

Removing SPIA adapters with Flexbar

Resource: http://sourceforge.net/p/flexbar/wiki/Manual/

•  Command
flexbar --adapters
Adapter.fasta --
adapter-trim-end LEFT
--min-read-length 60 –-
reads L2_10d.
1.raw.fastq --reads2
L2_10d.2.raw.fastq --
target L2_10d --
format=sanger --
adapter-min-overlap 7

•  Result:
•  Clip adapters
•  Filter reads with uncalled

bases
•  Remove any reads <60bp

Quality trimming & filtering with Trimmomatic

Resource: http://www.usadellab.org/cms/?page=trimmomatic

•  Command:
•  java -jar ~/bin/trimmomatic-0.33.jar PE -phred33

L2_10d.spia_1.fastq L2_10d.spia_2.fastq L2_10d.1.fb-
tm.fastq L2_10d.1.junk.fastq L2_10d.2.fb-tm.fastq
L2_10d.2.junk.fastq ILLUMINACLIP:Adapters.fasta:2:30:10
SLIDINGWINDOW:5:20 LEADING:20 TRAILING:20 MINLEN:60

•  Result
•  Clipping any remaining Illumina sequencing adapters
•  Clipping any bases from the end of the reads with quality score <20
•  Sliding window quality trim
•  Removing any reads that are <60bp after clipping and trimming

•  Program prints basic statistics to standard output

- 39 -

Complexity filtering with seq-crumbs

Resource: https://bioinf.comav.upv.es/seq_crumbs/available_crumbs.html

•  Seq-crumbs interleave fastq files
•  interleave_pairs –o

L2_10d.int.fb-tm.fastq
L2_10d.1.fb-tm.fastq
L2_10d.1.fb-tm.fastq

•  Filter low complexity reads
•  filter_by_complexity –o

L2_10d.int.fb-tm-sc.fastq
--paired_reads --
fail_drag_pair
L2_10d.int.fb-tm.fastq

•  Seq-crumbs de-interleave fastq files

•  deinterleave_pairs –o
L2_10d.1.fb-tm-sc.fastq
L2_10d.2.fb-tm-sc.fastq
L2_10d.int.fb-tm-sc.fastq

Quality control, reviewed

•  Quality trimming/filtering
•  Adapter removal
•  Quality trimming
•  Length filtering
•  Complexity filtering

•  Result: confidence in
sequence presented

Before QC:

After QC:

- 40 -

Contaminant filtering

•  Do I need to do contaminant
filtering?

•  Questions to consider:
•  Where did my worm live?

•  Is the host’s genome
available?

•  If not, what’s the next best
thing?

•  Is my worm easily isolated from
its host?

•  What does my worm/host eat?
•  Is my worm easily rinsed/

cleaned?

•  What do you expect to see?

Contaminant filtering with Bowtie2

Resource: http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml

•  Bowtie for mapping when splicing IS NOT a consideration

•  SILVA rRNA: http://www.arb-silva.de/
•  “SILVA provides comprehensive, quality checked and regularly updated

datasets of aligned small (16s/18s, SSU) and large subunit (23s/28s,
LSU) ribosomal RNA sequences for all three domains of life”

•  Bacteria
•  GenBank bacterial database
•  Custom database (human microbiome project)

Gene 1 Gene 2 Gene 3

- 41 -

Contaminant filtering with Tophat2

Resource: https://ccb.jhu.edu/software/tophat/manual.shtml

•  Tophat for mapping when splicing IS a consideration
•  Bowtie aligns reads that fall neatly within exons
•  Tophat splits reads across introns/gaps

•  Databases
•  Human
•  Host

•  Intermediate
•  Definitive

•  Sources
•  Genbank / Refseq
•  Ensembl.org

Exon 1 Exon 2

Remove contaminant reads

Resource: https://broadinstitute.github.io/picard/explain-flags.html (explanation of sam flags)

•  Index database
•  bowtie2-build Pig.fasta Pig.fasta

•  Map with bowtie
•  bowtie2 –x Pig.fasta -1 L2_10d.1.fb-tm-sc.fastq -2 L2_10d.

1.fb-tm-sc.fastq –S MapPig.sam
•  Map with tophat

•  tophat2 –o L2_10d Pig.fasta L2_10d.1.fb-tm-sc.fastq L2_10d.
1.fb-tm-sc.fastq

•  Counting mapped reads
•  For BAM file: samtools view –c –F 4 accepted_hits.bam
•  For SAM file: samtools view –c –S –F 4 MapPig.sam

•  Remove contaminant reads and their mates as before

•  Result:
•  High quality base calls
•  Confidence in the source of the reads

- 42 -

Results of quality control

•  Count the number of reads maintained at each step!
•  find . –name “*1.clean.fastq” | xargs wc –l
•  Divide line count by 4 to get fastq entries

Downsampled read set:

 L2_10d L3_16d L3_17d L4_21d L5_42d L5_r163 L5_r179 Total
Raw pairs 43,592,929 54,459,409 47,371,505 58,231,629 55,800,467 32,809,672 41,902,924 334,168,535
Flexbar 39,229,484 48,195,339 42,272,646 52,090,873 49,524,734 24,877,392 37,657,504 293,847,972
Trimmomatic 30,586,411 40,437,016 33,302,203 42,655,938 41,935,364 21,862,295 29,745,662 240,524,889
SeqCrumbs 30,416,334 39,426,836 33,176,521 42,179,989 41,354,287 21,854,889 29,648,071 238,056,927
Contaminants 26,501,312 36,740,860 32,956,606 39,675,217 39,508,530 21,780,296 29,469,388 226,632,209
% maintained 60.79% 67.46% 69.57% 68.13% 70.80% 66.38% 70.33% 67.82%

Full read set:

 L2_10d L3_16d L3_17d L4_21d L5_42d L5_r163 L5_r179 Total
Raw pairs 4,435,622 5,511,063 4,817,349 5,891,002 5,644,329 3,337,590 4,258,806 33,895,761
Flexbar 3,991,748 4,878,344 4,298,728 5,270,820 5,009,942 2,530,803 3,826,835 29,807,220
Trimmomatic 3,110,420 4,007,562 3,385,936 4,226,000 4,165,397 2,220,509 3,021,273 24,137,097
SeqCrumbs 3,093,078 3,917,497 3,373,150 4,183,440 4,113,913 2,219,777 3,011,416 23,912,271
Contaminants 2,696,239 3,643,862 3,350,928 3,927,395 3,926,103 2,211,368 2,993,460 22,749,355
% maintained 60.80% 66.10% 69.60% 66.70% 69.60% 66.30% 70.30% 67.10%

RNA-seq analysis overview

RNA sequencing and
read cleaning

RNA-Seq dataset(s) No genome
available

de novo transcriptome
assembly

Map RNA-Seq reads
to genome

Genome
available

Map RNA-Seq reads to
transcriptome

Isoform
reconstruction

Table of read counts
per transcript or gene

model

Table of read counts
per gene

Map RNA-Seq
reads to isoforms

Table of read
counts per isoform

or exon

Downstream analysis (differential gene expression,
clustering, PCA, functional enrichment, etc).

- 43 -

Section 2: Transcriptome
Module 1: Genome based RNA-seq analyses

1)  Splice-aware alignment and verification
2)  Genome-assisted transcript assembly
3)  Counting reads in features for differential expression analyses

Resource: http://www.nature.com/nprot/journal/v8/n9/pdf/nprot.2013.099.pdf

Where to find a reference genome

•  Sources:
•  Genbank/Refseq
•  Nematode.net
•  Wormbase.org

•  Requirements:
•  Assembly fasta
•  GFF3
•  Functional annotation

or protein/cds fasta

- 44 -

GFF3 format

Resource: http://www.usadellab.org/cms/?page=trimmomatic

•  Column 1: contig or scaffold
•  Must match the assembly fasta!

•  Column 3: feature
•  CDS, coding_exon

•  Column 9: mRNAs/genes the feature belongs to

Aligning reads with Tophat2

Resource: https://ccb.jhu.edu/software/tophat/manual.shtml

•  Commands:
bowtie2-build
D918.fa D918.fa

tophat2 -o L2_10d -G
D918.gff3
D918.fa ../module_0/
L2_10d.
1.clean.fastq ../
module_0/L2_10d.
2.clean.fastq

•  -G option:

•  “If this option is provided, TopHat will first extract the transcript sequences
and use Bowtie to align reads to this virtual transcriptome. Only the reads
that do not fully map to the transcriptome will then be mapped on the
genome. The reads that did map on the transcriptome will be converted to
genomic mappings (spliced as needed) and merged with the novel
mappings and junctions in the final tophat output”

- 45 -

Counting reads within features with htseq-count

Resource: http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

•  Command:
•  htseq-count –f bam

–r pos –t CDS –i
Parent
accepted_hits.bam
D918.gff3 >
L2_10d.htseq.txt

•  Arguments
•  -f: format

•  sam or bam
•  -r: order

•  name or pos
•  -t: feature type

•  coding_exon
•  exon
•  CDS

•  -i: feature ID
•  Parent

htseq-count output

Resource: http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

•  All values should be integers
•  60-80% mapping rate is considered good

•  Sum counts for all genes and divide by cleaned read pairs

- 46 -

Cufflinks: genome-assisted transcript assembly

Resource: http://www.nature.com/nprot/journal/
v7/n3/pdf/nprot.2012.016.pdf

•  Assembly transcripts for each
sample separately using Cufflinks
cufflinks –o CuffOUTPUT
accepted_hits.bam

•  Create a file that lists the
assembly file for each sample
find . -name
"transcripts.gtf" >
assemblies.txt

•  Run cuffmerge to create a single
merged transcriptome annotation
cuffmerge –g genome.gtf
–s genome.fasta
assemblies.txt
•  Creates an output called

merged.gtf

•  Use gffread to print a fasta file of our transcripts

gffread merged.gtf –g genome.fasta
–w Transcripts.fa
•  Options:

•  -U: discard single-exon transcripts
•  -M: collapse matching transcripts
•  -K: collapse shorter, fully contained

transcripts

RNA-seq analysis overview

RNA sequencing and
read cleaning

RNA-Seq dataset(s) No genome
available

de novo transcriptome
assembly

Map RNA-Seq reads
to genome

Genome
available

Map RNA-Seq reads to
transcriptome

Isoform
reconstruction

Table of read counts
per transcript or gene

model

Table of read counts
per gene

Map RNA-Seq
reads to isoforms

Table of read
counts per isoform

or exon

Downstream analysis (differential gene expression,
clustering, PCA, functional enrichment, etc).

- 47 -

Section 2: Transcriptome
Module 2: De novo transcript assembly

1)  Digital read normalization
2)  De novo transcript assembly
3)  Post-assembly filtering
4)  Mapping raw reads to the assembly

Problems with de novo transcript assembly

•  Lots and lots of “puzzle
pieces”

•  Varying transcript abundance
•  Alternative splicing
•  Differential gene expression

Resource: http://arxiv.org/pdf/1203.4802v2.pdf

 L2_10d L3_16d L3_17d L4_21d L5_42d L5_r163 L5_r179 Total

clean read
pairs 26,501,312 36,740,860 32,956,606 39,675,217 39,508,530 21,780,296 29,469,388 226,632,209

Isoform #1

Isoform #2

- 48 -

Data reduction methods

Gene A Gene B What do you do when there’s too
much information?

•  Wet-lab based cDNA normalization techniques
•  Random down sampling
•  Digital read normalization

Resource: http://arxiv.org/pdf/1203.4802v2.pdf

Digital read normalization
•  Solution: “a computational algorithm that systematizes coverage in shotgun

sequencing data sets, thereby decreasing sampling variation, discarding redundant
data, and removing the majority of errors”

•  Method:
•  K-mer abundance correlates well with mapping-based estimates of read

coverage
•  K-mers tend to have similar abundances within a read since they originate from

the same DNA/RNA molecule

•  Estimate k-mer abundance (i.e., read coverage) to make the following
determination

for$read$in$dataset:$
ifestimated_coverage(read)$<$C:$
$ $accept(read)$
$else:$
$ $discard(read)$Resource: http://arxiv.org/pdf/

1203.4802v2.pdf

- 49 -

Normalization software

•  Khmer: http://khmer.readthedocs.org/en/v1.4.1/
•  Detailed protocol:

http://khmer-protocols.readthedocs.org/en/v0.8.2/mrnaseq/2-diginorm.html
•  Decide which reads need to be maintained
•  Trim off low abundance parts of high coverage reads (i.e., errors)
•  Re-pair reads

•  Trinity implementation:
•  https://trinityrnaseq.github.io/trinity_insilico_normalization.html

•  For an explanation of the difference, see this blog post:
•  http://ivory.idyll.org/blog/trinity-in-silico-normalize.html

De novo transcript assembly with Trinity

Resource: http://trinityrnaseq.github.io/

•  Trinity approach
•  Inchworm: assembles reads into unique sequences of transcripts, often

generating full-length transcripts for a dominant isoform, and reporting
unique portions of alternatively spliced transcripts

•  Chrysalis: clusters inchworm contigs into complete de Bruijn graphs for
each cluster

•  Butterfly: processes the individual graphs to report full-length transcripts for
alternatively spliced isoforms

•  Trinity command:
Trinity --seqType fq --max_memory XXG --left AllLeft.fastq
--right AllRight.fastq --normalize_reads –output TRINITY

•  Time and memory:
•  Approximately 1G of RAM per million read pairs
•  Approximately 0.5-1h per million read pairs

- 50 -

Trinity output

http://trinityrnaseq.github.io/#trinity_output

•  Trinity will create a Trinity.fasta output file in the specified output directory
•  Trinity groups transcripts into clusters based on shared sequence content.

These clusters are loosely referred to as “genes” or “unigenes”. This information
is coded in the trinity accession.

Assembly statistics

Resource: http://trinityrnaseq.github.io/#trinity_output

•  Command:
perl ~/bin/
trinityrnaseq-2.0.6/util/
TrinityStats.pl
Trinity.fasta

•  In a perfect assembly, “unigenes” =
expressed genes

•  Why are there so many genes/

transcripts?
•  Fragmentation
•  Low-confidence transcripts

“Test” assembly:

- 51 -

Assembly filtering

Resource: http://trinityrnaseq.github.io/analysis/abundance_estimation.html

•  Align reads and estimate abundance
perl ~/bin/trinityrnaseq-2.0.6/
util/
align_and_estimate_abundance.pl --
transcripts Trinity.fasta --seqType
fq --left ../AllLeft.fastq --
right ../AllRight.fastq --
est_method RSEM --output_dir RSEM
--aln_method bowtie2 --
prep_reference

•  Filter lowly supported transcripts
perl ~/bin/trinityrnaseq-2.0.6/
util/filter_fasta_by_rsem_values.pl
--rsem_output=RSEM.isoforms.results
--fasta=../Trinity.fasta --
output=Trinity.filtered.fasta --
tpm_cutoff=1.0 --isopct_cutoff=1.00

Unfiltered Filtered
unigenes 153,461 59,050

transcripts 251,721 91,029

Ave
transcript
size

460 bp 563 bp

Alternative
splicing

24.8% of
unigenes,
ave 3.6,
max 85

24.4% of
unigenes,
ave 3.2,
max 20

% pairs
mapped

68.3% 66.3%

Paragonimus kellicotti assembly:

Feature counting for differential expression

Resource: http://trinityrnaseq.github.io/analysis/diff_expression_analysis.html

•  Prepare reference
perl ~/bin/trinityrnaseq-2.0.6/util/
align_and_estimate_abundance.pl --transcripts
Trinity.filtered.fasta --est_method RSEM --aln_method bowtie2
--prep_reference

•  Align reads and estimate abundance
perl ~/bin/trinityrnaseq-2.0.6/util/
align_and_estimate_abundance.pl --transcripts
Trinity.filtered.fasta --seqType fq --est_method RSEM --
aln_method bowtie2 --left ../../../module_0/L2_10d.
1.clean.fastq --right ../../../module_0/L2_10d.2.clean.fastq
--output_dir L2_10d

•  Join the abundance values for each sample into matrix for DESeq2
perl ~/bin/trinityrnaseq-2.0.6/util/
abundance_estimates_to_matrix.pl --est_method RSEM L2_10d/
RSEM.genes.results L3_16d/RSEM.genes.results …

- 52 -

Feature counting for differential expression

Resource: http://trinityrnaseq.github.io/analysis/diff_expression_analysis.html

Cooperia punctata count table

HIGH.genes.

results
LOW.genes.

results
UntreatedA.genes.

results
UntreatedB.genes.

results
comp197262_c2 53.02 51.97 24 107
comp196358_c0 90 125 104 91
comp194909_c0 3 2 0 79.07
comp189445_c0 15 5 7 15
comp199614_c0 19 23 24.67 18.89
comp191897_c2 16 20 26 3
comp196155_c1 223 283 119 467
comp196537_c0 74.2 98 38.67 200.96
comp194722_c1 11 6 1 33
comp200992_c1 9.24 21.98 27 11
comp189025_c0 57993.94 35917.49 21809.97 76141.69
comp195426_c0 32 74.17 52.45 100.2
comp197998_c0 27 8 12 13
comp201556_c2 22 19 22 25

RNA-seq analysis overview

RNA sequencing and
read cleaning

RNA-Seq dataset(s) No genome
available

de novo transcriptome
assembly

Map RNA-Seq reads
to genome

Genome
available

Map RNA-Seq reads to
transcriptome

Isoform
reconstruction

Table of read counts
per transcript or gene

model

Table of read counts
per gene

Map RNA-Seq
reads to isoforms

Table of read
counts per isoform

or exon

Downstream analysis (differential gene expression,
clustering, PCA, functional enrichment, etc).

- 53 -

Section 2: Transcriptome
Module 3: Expression and differential expression

- For this module, we will be off of the server and working directly on your laptops.

- We will use data files that you downloaded using scp yesterday, which should be
saved in ~/Desktop/WORKSHOP_RESOURCES/Section_2/module_3/. Please check
that you have downloaded files and folders to this directory.

- Raw data was produced in the previous modules.

- You should already have both RStudio and MS Excel installed on your laptops, as
requested before the class started.

Introduction - Expression and differential expression

- 54 -

Differential gene expression software

- Calling differentially expressed genes is a complicated statistical problem.
- “Dispersion” of a gene or a sample is used to estimate baseline (within-replicate)
variability, and is essential for accurate statistical measurement. Genes with high inter-
replicate variability should not be considered “differential”.
- Some measure of dispersion is calculated by all widely-accepted differential callers,
but they all calculate it in slightly different ways.
- Three software packages are primarily used: DESeq, EdgeR, and CuffDiff. Others
include SAMseq, baySeq, NOIseq, and EBSeq.
- DESeq and EdgeR are the two most commonly used differential gene expression
calculation packages. These produce similar overall results in terms of final gene lists.

How to choose a differential expression caller
- The primary practical difference between DESeq and EdgeR is sensitivity (i.e. the
number of genes called differential).
- If you are interested in transcript / isoform data, then use CuffDiff. CuffDiff tends to
be very stringent (fewer differentially expressed genes than DESeq or EdgeR).
- SAMseq can be useful for cross-sample differential expression calling, but should not
be used for two-sample comparisons.
- Having a larger set of differentially expressed genes is not necessarily better!
- More differentially expressed genes = more false positives, and a larger set of genes
to summarize for biological interpretation.

http://bib.oxfordjournals.org/content/early/2013/12/02/bib.bbt086.long

CuffDiff

-  CuffDiff considers read counts per exon, and can
identify significant changes in exon use and
isoform abundance for the same gene.

-  This is useful (a) for model organisms where
there is known functional significance for specific
exons/isoforms or for (b) for studies of a subset
of specific genes of interest.

-  At a genome-wide level, quantifying differential
exon usage complicates downstream analysis
without providing practically useful data.

-  For example, it is difficult to perform genome-
wide functional enrichment testing on
differentially expressed isoforms, since multiple
isoforms from the same gene can contribute to
enrichment scores.

http://www.nature.com/nbt/journal/v31/n1/fig_tab/nbt.2450_F2.html

- 55 -

Replicate considerations

- At least triplicate is preferred for accurate analysis.

- Some samples may be lost due to very high variability from other replicates or low
quality RNA, so duplicate is risky (single-replicate produces unreliable statistics).

- Collecting the replicates by repeating an experiment at a later time almost never
works for helminth studies.

- Both DESeq and EdgeR can be executed with single replicates, but use different
statistical models.

- Another program called GFOLD is designed specifically for single-replicate samples,
but these comparisons with any software are not confident without additional
validation (e.g. qPCR of identified genes).

- Track metadata carefully whenever possible. E.g., the number of worms collected,
whether there is a possibility of having mixed samples (male and female, L3 and L4,
etc), time of sampling, etc. This may help to explain within-replicate variability in some
cases.

Gene clustering
- Another analysis approach is to cluster samples based on their overall expression
patterns across all available RNA-Seq datasets.
- While this is useful for grouping and classifying genes, the clusters only consider the
pattern and do not consider whether the genes are statistically differentially expressed.
- One tool called Short Time Series Expression Miner (STEM) clustering will also identify
over-represented patterns, representing clusters of probable biological significance.

Mfuzz Clustering

STEM Clustering

http://www.biomedcentral.com/1471-2105/7/191

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2139991/

- 56 -

Differential gene expression measurement

Experimental design considerations: What are the samples you want to compare? What
approach will you use to compare them?

Example 1: Treatment(s) vs Control

1A. Simple treatment / control pair:

- Which genes are high in treatment (upregulated) or lower in treatment (downregulated)?

1B. Control vs multiple treatments
(e.g. high and low doses of a drug treatment)

- Which genes are upregulated or downregulated by both treatments, and which ones are
only differentially regulated by high-dose treatment but not low?

Control

Low
Dose

High
Dose

Control Treatment

Differential gene expression measurement

Example 2: Tissue-based (unordered, multiple samples)
e.g. Whole-worm, intestine, pharynx, and male and female reproductive tissue.
2A. Each compared to whole-worm:

- What are the tissue-specific overexpressed genes relative to the whole-worm sample?

Whole worm

Intestine

Pharynx Male Reproductive

Female Reproductive

2B. Each compared to all other tissues:

- What are the tissue-specific overexpressed genes relative to the other sampled tissues?

Intestine, Male Reproductive, Female Reproductive Pharynx

Pharynx, Male Reproductive, Female Reproductive Intestine

2C. Cross-sample combinatorial comparisons

- Some cross-sample differential expression callers (e.g. SAMSeq) can identify combinations
of samples with upregulation (e.g. upregulated in both pharynx and intestine relative to other
tissues).

http://statweb.stanford.edu/~tibs/SAM/

- 57 -

3B Grouped : L2 L3 L4 L5

Differential gene expression measurement

Example 3: Stage-based (time series) data
(e.g. L2, L3, L4, L5 larvae)

3A Pairwise : L2 L3 L4 L5
- Which genes are upregulated in one stage vs its
surrounding stage(s)?

- Which genes are upregulated in early stages relative
to late stages?
- Stages are treated as pseudo-replicates for each
other.

3C Individual : L2 L3 L4 L5

Individual : L5 L2 L3 L4

Etc.

- Which genes are upregulated in one stage relative to
all others?

- R is a free software environment for statistical computing and graphics.
- RStudio is a set of integrated tools to make R much easier to use.

- “Packages” of existing software can be downloaded, installed, and
loaded easily.
- Many bioinformatics tools (especially for statistics analysis) are
available exclusively in R.
- You can typically work with R by modifying existing scripts, most of
which can be downloaded from manuals or other internet resources.

- In this module, we will learn how to use R studio to:

 - Install libraries, set the working directory and input files
 - Run DESeq2 for differential gene expression analysis
 - Run PCA and hierarchical clustering
 - Run GOSTATS for enrichment of differentially expressed genes

Using RStudio

- 58 -

Using
RStudio

1. Script Window
- Load, modify, and run commands

2. Console
- Output from running commands

3. Environment
- Interactive list of
objects loaded

4. Packages /
Plots / Files
- Load and view
packages, view and
save plots, view files
in current directory

- The RStudio
interface is
split into four
windows.

- If you only
download R,
then you will
only have the
console to
work with.

An example of interacting with RStudio

- From the menu, select “choose directory” as shown above, to set the working
directory where files will be loaded from and saved to. Set to ‘~/Desktop/
WORKSHOP_RESOURCES/Section_2/module_3/’ for this course.

- When you do this, you will see the “setwd” R command ran in the console. This can
then be copied and pasted in the script window.

- If you were to save this script in the future, you could now highlight and run this
command in order to set the working directory more easily.

- 59 -

Installing R packages

- Now open the “Helminth_Genomics_Workshop_Script.R” file. This contains all of the
commands we will need for the workshop.
- Any information following a # sign is a comment to clarify what the code is for.
- First, we will install packages. Packages are either installed directly using
“install.packages()”, or they are loaded through bioconductor (“biocLite”).
- Highlight the code shown and click “run” to install all of the necessary packages.
- The manuals for different R packages will include the line necessary to install them.
- Installations only need to be performed one time on each computer, but the packages
need to be loaded every time R is restarted.

Loading R packages

- After you install packages, they will show up in the “Packages” list in your RStudio
sidebar. To “load” the packages in the future, you can simply check them off. When you
do, you will the package loading code in the console window.
- This code can also be pasted into scripts. Note that the full path is not necessary (e.g.,
in the screenshot below, you can just use library(“DESeq2”) instead, which will make
your script compatible on other people’s computers.
- Packages can also be searched and installed from this menu, but it is typically easier
to paste the install code from a guide.

- 60 -

- Almost all differential expression callers require raw reads as input.
- We generated read counts per sample from HTSeq output in the previous module.

- Open “tsuis_rnaseq_htseq_countstable.txt” from the DESeq directory (in MS Excel)
- This file contains unprocessed HTSeq count output (from the previous module) for T.
suis collected from different stages. All downstream work will be performed on this
dataset.
- Note that this is saved as a tab-delimited text file. This will be the standard output
from most linux programs. If you save in Excel, you will need to specify this format in
the “Save as” menu.

- DESeq requires the genes to be listed in the first columns, the samples labeled in
the first row, and read counts in the matrix. This is standard to many of the other
differential callers (including EdgeR)

Preparing and loading input files: DESeq analysis

- After setting the working directory and loading DESeq, we load the input reads file.
- In R, “objects” are defined using an ‘arrow’ <-
- We will call the object for the HTSeq counts table “COUNTS”
- It is important to understand the input command because (a) it is often omitted when
you download scripts (they assume you know how to do this) and (b) having the input
formatted or loaded incorrectly is a very common reason that scripts don’t work when
they are launched. Pay close attention to manuals describing input data.

Loading input files

Object
name

Load as a
matrix object
(not always
necessary)

Most typical
command for
loading data

Filename in
working
directory

Separator for
the text file; Can
also be comma
or space, but \t
(tab) is the most

common.

Set to
“FALSE” if
there are

no headers

Omit if
there are
no row
names

- 61 -

- For DESeq, you will also need to prepare a metadata file describing your samples.
- This input file is formatted as shown below. Column names can be customized, but the
first column must contain sample names corresponding to the counts table.

- The samples that you want to compare should be grouped in one of the columns. Here,
we will focus on “Comparison1”, which is early larval stages vs late stages.
- You will need to construct this metadata file yourself prior to running R. We will look at
creating tables in Excel later in this module.
 - Unlike the read counts table, this input command is not loaded “as.matrix”, but is just a
table:

Loading input files

- In RStudio, loaded objects show up in the environment window.
- If you click on the table icon to the right of the object, you can view the object (in the
script window) to ensure that files have loaded properly.
- Checking to see if intermediate objects are empty (“NULL”) is a good way to
troubleshoot where problems are starting.

Managing data

- 62 -

- In some cases, there are secondary factors to consider. For example, samples may
have been collected in two batches, introducing potential variance independent of the
comparison.
- This data can be specified in the metadata file, and considered by DESeq using the
following syntax:

- This is also useful in cases of paired samples (e.g., the same individuals before and
after treatment). DESeq and EdgeR can both utilize secondary factors, but CuffDiff and
other software cannot.

- First, we will make “dds”, the DESeq DataSet object

Running DESeq

Dataset
name

DESeq command
(loaded with package)

COUNTS dataset
we previously defined

META dataset
we previously defined

Header name META
that we want to use
for the comparison

- The following line runs the core DESeq code:

- Then, this summarizes the results, and writes the summary to a file:

The results are also shownin the console:

- This shows that at an adjusted p-value of 0.1, ~36% of genes are differentially
expressed.
- We will parse the output manually later, with a different p value cutoff.

Running DESeq and saving results

- 63 -

- Next, we prepare the output data:

- Finally, the write.table command is used to export the results to a file in the working
directory. We’ll look at the results later, during the Excel tutorial.

Running DESeq and saving results

We will
save this

object to a file
in the next
 command

Interpret
dds object

as readable
results

Define
comparisons

Header
name

from the
META

file

First
comparison
group name
under the
header

Second
comparison
group name
under the
header

Object
name

Output
filename
(try to be

descriptive)

Tab
delimited

- Excel is a spreadsheet program which is useful for organizing and visualizing data,
calculating statistics, and performing analyses.
- Today we will learn a variety of approaches for using Excel to work with whole-genome
data, with a focus on maintaining data integrity and organizing data in the most
accessible way possible.
- We will go from several raw data files (generated in previous modules) to a complete
database with functional annotation data, expression levels, differential expression data,
and more.
- Open “Module 3 Table Completed.xlsx” in the ‘Excel’ folder to view a copy of the
completed database, before we create it.

Introduction to Microsoft Excel

- 64 -

- The spreadsheet is laid out in a coordinate system of “cells” with lettered columns and
numbered rows. Numbers or string can be entered into any cell just by typing and
pressing enter.
- Navigate the spreadsheet using either your cursor or by using the arrows on your
keyboard. Multiple cells can be highlighted with the keyboard by holding shift and
scrolling with the arrows.
- Formulas can be entered in any cell by entering an “=“ sign.
- All formulas follow a specific format of the “=“ sign, the formula name, an open bracket,
variables, and a closed bracket.
- As you type a formula, a yellow box will pop up to tell you what variables can be
entered. Here, I am calculating the average of a series of numbers, in cell B2. The
yellow box indicates that I should enter the numbers with commas in between:

- After you close the bracket and press enter, the cell value will show the result of the
formula, but the formula bar will show the formula itself, when cell B2 is selected:

Introduction to MS Excel: Formulas

- Formulas can also be calculated on references to cells containing numbers. This is the
same formula, but the numbers have been replaced with references to cells containing
numbers:

- Rather than list all of the cells, cell ranges can be used. This follows the format of the
first cell, a colon, and then the last cell:

- Ranges can span columns and rows (e.g., take the average of a large table).
- Cell references do not need to be typed in manually. You can select the range with your
mouse, or you can use the keyboard to select it, after typing the formula and opening
the bracket.
- A full list of Excel formulas can be found here:
http://www.techonthenet.com/excel/formulas/

Formulas in MS Excel

- 65 -

- Open ~/Desktop/WORKSHOP_RESOURCES/Section_2/module_3/Excel/
tsuis_rnaseq_htseq_countstable.txt, in Excel.
- This is a large table, with 9,833 rows and 8 columns, but we are going to add more
columns as we build the database.
- If you hold down the “command” key on a Mac (�) or the “CTRL” key on Windows,
and then scroll with your keyboard arrows, the selection will skip to the end of the table.
This becomes essential for highlighting all of the cells in a column in a large table, since
scrolling with the mouse can take several minutes.
 - The first thing we will do is insert four empty rows above the dataset and one below
the headers, in order to make room to add more detailed descriptions.
- To do this, right click on the number on the left-hand border, and choose “insert”. New
columns or rows will enter above (rows) to the left (columns) of the insertion point.

Working with large datasets

- The most important thing when working with these spreadsheets is to never sort the
data incorrectly. Not only will all of the results be wrong, but it will be very difficult to tell
that something went wrong.
- For this reason, you should never use “Data -> Sort” to sort your data. Instead, always
use the “filter” feature.
- In this example, I am highlighting (selecting) the empty row below my headers and then
clicking the funnel icon that says “Filter” below it (under the “Data” tab of the ribbon).

- Once this has been clicked, small grey arrows will appear in the row that was
highlighted.

Sorting data in Excel

- 66 -

- When you click on these “sorting arrows”, you can choose to sort a column of your
choice, either ascending or descending. All of the data that is underneath an arrow will
sort with that data, every time. If you were to sort manually, it is up to you to select the
entire dataset every time, so this is the safe option to ensure data integrity.

- Since we are going to add more data, we want the arrows to extend very far to the right
of the spreadsheet, so that new data will also sort. Excel will only let you add the arrows
to columns spanning any actual content, so scroll far to the right with the keyboard and
add a space with the spacebar to a cell in row 6 (for example, in cell EA6). Then, hold
shift and command/CTRL, and press left to scroll all the way back, highlighting all of the
cells along the way. With the entire row selected, press the filter button in the “Data” tab
of the ribbon.
- Now, as we add data to the table, all of it will be sortable and will stay organized.
- I do not recommend ever actually using the “Filter” functionality, since this hides
rows from view.

Sorting data in Excel

- Descriptive, organized headers are essential for keeping your data organized,
communicating your data to others, and for keeping track of where results came from.

- Start by inserting a column before the read data, and adding row labels for the
metadata. Always retain the original sample names from the raw data so that data can
be compared in the future.
- Next, in cell C2, type "HTSeq output (tsuis_rnaseq_htseq_countstable.txt, Sept 11
2015)”, because this is a complete, descriptive header for this entire set of columns.
Then highlight cells C2:J2, and click “Merge” under the “Home” tab of the ribbon:

- This groups all of the columns together, while still allowing them to have separate
descriptions. Each set of data with more than one column should be formatted this
way to keep it as organized as possible.

Formatting headers

- 67 -

- Use borders to box off the
headers and the different
sections of data. To do this,
highlight a cell range, then
click the borders box in the
“home” section of the ribbon.
- For database tables, “Thick
Box Borders” make it easier to
read. For any table that is to
be printed or published, the
thinner “outside borders” look
better.
- Reminder: Use
Command/CTRL + shift and
the arrow keys to highlight all
of the data to the very bottom,
to add borders to the entire
data block.

Formatting headers

- Finally, highlight your data, and use the font settings in the ribbon to make it more
readable.
- Choose Arial size 10 font, and center the data whenever it’s not in a long string
format.
- Major headings can be bolded.
- Adjust the column widths by dragging from the edges of the column letters on the
outside of the sheet, so that they only use as much space as needed.

Formatting headers

- 68 -

- Under “Layout”, and then “Freeze Panes”, you can choose to ‘freeze’ all of the rows
above and all of the columns to the left of the currently selected cell.
- Doing this will lock the headers and gene names in place, so that when you scroll
through the table, you will always be able to see this critical data.

Freezing panes

Adding additional data: Gene Lengths
- We will use the gene lengths to calculate FPKM values from the raw counts table.
- First, open up “gene lengths.txt” from the Excel folder, select the entire table, and copy
it to the clipboard.
- Now, go back to your main file and make a new “sheet” in Excel by clicking the + sign
on beside the tabs at the bottom. Paste the data into this second sheet, so that it doesn’t
paste mis-aligned into the main table.
- Add a header to your main table for where the new data will go.
- The “wrap text” font feature is helpful when the header name is long but the data will
not be wide.

Why don’t we just sort the two tables by gene name and then copy and paste the
data?
- Because even if the same number of genes is present, we can’t necessarily trust that
every gene is present or entered in the same way.
- For example, in an updated genome draft, one gene can be removed and one new
gene can be added. The genes at the start and ends of the table will match, but there
will be mismatches for every gene in between these two. Any mistakes in a gene
name will cause you reach false conclusions about your entire dataset.

- 69 -

Looking up data in Excel with =VLOOKUP
=VLOOKUP is one of the most useful formulas in Excel, and allows for looking up
matching values in a Vertical reference list.
The syntax is:
= VLOOKUP ([Value to lookup], [Table containing the value in the first column],

 [column number to return], FALSE)

- In this case, we want to look up the gene length corresponding to each gene name in
the main table. We will start with the first gene, which is in cell B7 in this example:

- Type “=VLOOKUP(B7,” and then click to the second tab in your file containing the gene
lengths. Highlight this entire table using Command/CTRL+Shift and the arrow keys, and
then type a second comma. If you make a mistake doing this, just press escape and
start over. Then, click back to your main table, and finish the formula with “2” and
“FALSE” as the last two entries.

Looking up data in Excel with =VLOOKUP
- This formula now identifies the gene length of the first gene (in cell B7) by referencing
the table in Sheet 2, cells B2:C9834, by matching the gene name in the first column and
returning the value in the second column. The last value of “FALSE” is necessary
because “TRUE” will allow approximate matches. This should always be false in all
cases for any scientific work.

- 70 -

Copying and pasting formulas in Excel
- Copy and paste the VLOOKUP formula to the cell below it, to look up the value of the
second gene. You can right click or use the menus to do this, but I recommend getting
used to Command/CTRL+C and Command/CTRL+V to do this.
- Note that in Excel, if you copy and paste a formula down one row, all of the cell
references in the formula also move by one row (also with columns). Here, we are now
looking up cell B8, to get the value for the second gene instead of the first.
- While this is useful, we have to be careful, because the cell references for the lookup
table of gene lengths (in sheet 2) has also moved down (from B2:C9834 to B3:C9835).

- In order to fix this, we can use $ signs to “lock” the row references in place for the
lookup table.
- Any column letter or row number with a $ in front of it will not change when the formula
is copied and pasted.
- Return to the first formula cell and change the
reference to B$2:C$9834, and paste that down.

Filling and ‘clearing’ formulas
- We need to paste the formula down the entire column.
- Copy the formula, then scroll to the bottom of the table by command/CTRL+down on
one of the gene count columns.
- Starting at the bottom of the ‘gene lengths’ column, hold shift and command/CTRL and
press up, to highlight the entire column. Then, paste with command/CTRL+V.
- Now we have aligned all of the gene lengths.
- The formulas are still “active” and will re-calculate
every time the table is sorted or the file is saved.
Enough of these active formulas will cause the
spreadsheet to slow down or crash eventually.
- We will therefore “clear” the formulas, leaving their
values behind.
- To do this, highlight the entire column and copy
(command/CTRL+C), and then within the copied
cells, right click and choose “paste special”.
- In the “Paste special” dialog, choose “values” and
then click “ok”.

- 71 -

Checking for formula errors
- Formulas in Excel can return errors. In the case of =VLOOKUP, if there is no lookup
value in the reference table, it will return ‘#N/A’, indicating that there is no match in the
lookup table.
- All errors start with a # sign, so they can be searched easily.
- After clearing the formulas (previous slide), highlight the column and press command/
CTRL+F to search.
- If there is no match in this search, then all of the genes were matched up and there is
no problem.

Calculating FPKM values
- We can now calculate FPKM expression values from the raw read counts. Start by
copying and pasting the read count headers to the right of the gene lengths, and change
the title of the new header set:

- FPKM = Fragments (counts from HTSeq) Per Kilobase (gene length / 1000) per Million
of reads mapped (the total read count in the sample’s column in the HTSeq data).
- This gene expression measure is used because it is normalized both for the gene
length and the library size, making the values directly comparable across the entire
dataset, and between different experiments.
- We can calculate all of this in a single formula. Start by dividing by the count by the
gene length as shown below:

- Using parentheses organizes the formula to ensure that the order of operations is
correct (i.e., we are not dividing D7 by L7 first, and then dividing by 1000).

- 72 -

Calculating FPKM values
- Now all of this needs to be divided by (the library size / 1,000,000). So put the entire
existing formula in parentheses, and then divide by (the sum of the sample’s column / a
million):

- Verify this value to ensure that the formula is typed correctly (D918_00003 in L2 =
2.6339).
- We need to lock several things in place in order to copy and paste for the entire table.
First, the reference to L7 (the gene length) needs to move down, but not left-to-right, so
put a $ sign in front of the L but not the 7.
- Second, the “sum” range needs to be locked to the rows but not the columns. So
change that to D$7:D$9838, so that the columns move with the formula.
- The final formula should look like this:

Aligning additional data
- Copy and paste this formula for the entire FPKM table, and then clear the formulas and
check for errors as shown previously.
- This normalized data will later be used as input for hierarchical clustering (in R), but for
now we will continue building the database.
- Open “secretion data.txt” in the “Excel” directory, and paste into the second sheet of
your database file as before.
- This data is output from two different programs (Phobius and SecretomeP)
- Create headers for the data in your main table:

- Set up the =VLOOKUP formula for the first row and column:

- This data needs to be pasted both down and to the right. Using $ signs, lock the
column of the gene name, and the entire table:

- 73 -

Aligning additional data
- When pasting to the right, we also need to change the “2” to a “3” in the formula, to
return the value of the third column in the lookup table instead of the second.
- Also change this value to a “4” in the last column. Then, copy all three values and
paste down for the entire table, clear formulas, and check for errors.

- Now we will add an additional column, to indicate if each gene is secreted either by
classical or nonclassical secretion. This should be a “Y” if either of the other two columns
are a “Y”. We will use an =IF statement to perform this.

=IF is a very useful Excel formula for parsing data. The syntax is:
=IF([A logical test returning true or false, usually =, <, >, or =>, <=], [value if true], [value
if false])
- So for example, try entering =IF(1=2,”Yes”,”No”).
- This will return “No” in the cell, because the ‘logical test’ is false. If you change this to
1=1, then it will return “Yes”.
- Here, we need to check whether either of the cells beside the new column are “Y”. In
order to accomplish this we will use OR() in the logical test:

- Copy and paste this formula, clear values, and check for errors before moving on.

=IF formula

- 74 -

- In the empty ‘sorting’ row below your secretion header, use the =COUNTIF formula to
count how many genes are secreted according to each criteria.
=COUNTIF([range of cells to count], [criteria for counting])

- Here, we are counting how many “Y” values there are in the column. Paste this to the
right to count for each criteria:

- This is an easy way to summarize your data. You can also check if values are greater
than zero (“>0”), if values are larger than the value in another cell, etc.
- =COUNTIFS (with an S) can check multiple criteria in multiple columns.

=COUNTIF formula

- Open “interproscan_annotations_per_gene.txt” from the “Excel” file, and copy and
paste into the second sheet as before.
- Prepare the headers and use =VLOOKUP as before:

- This time there is an #N/A value because the lookup table does not contain
unannotated genes. Paste the formulas through, and then clear the formulas.
- Now, replace the #N/A values with “-”, to clean up the table.
- When long strings “hang” over into the next cell, add an
empty space in the column to the right, to cover it up:

Annotation data (lookup with missing values)

- 75 -

- Now we will add the DESeq results we calculated in RStudio.
- Open the “Comparison1_Early_vs_Late_tsuis_deseq2_output.txt” file in the DESeq
folder, and paste it into the second sheet of the dataset as before.
- First, note that the headers are all shifted to the left by 1 column. Cut and paste those
to the right to fix this. This problem commonly occurs with R output (row.names has no
header entry), so always be sure to check for an empty final column.

From the DESeq manual:

Parsing DESeq results

- We are only interested in the Log2 Fold Change and Adjusted P value, so delete the
other columns by right-clicking the column letters on the border and deleting them:

- Set up these headers in the main sheet, and perform the VLOOKUP for these values,
then add two headers, for the average FPKM values from the two sample groups:

- Use =AVERAGE to calculate the average value of the sample groups, then paste the
formulas down and clear the formulas.

Parsing DESeq results

- 76 -

- We want to know whether each gene is significantly differentially expressed in either
early larval or late larval stages. Start by setting up additional headers:

- We can see that a negative fold change corresponds to a gene that is higher in the late
stages than the early stages (and vice versa for a positive value).
- Therefore, in order to call a gene significantly higher in the early stages: (a) the fold
change value needs to be greater than zero, and (b) the P value needs to be less than a
threshold value of your choice.
- DESeq recommends a maximum threshold P value of 0.1, but we will parse more
conservatively, at 0.01 instead.
- For a very high-confidence small gene set, a threshold of 10-5 could be used.
- Generally, 0.05, 0.01, or 10-5 are used for publications.
- Fold change thresholds should not be used for RNA-Seq data. There is justification for
it with microarrays, but the high sensitivity of RNA-Seq data (and high abundance of
zero values) invalidates its use for statistical cutoffs.

Parsing DESeq results

- For the first column, use an =IF statement with an “AND” function to check whether
both (a) the Fold change value is greater than zero and (b) the P value is less than or
equal to 0.01:

- Repeat for the second column, but check if the fold change is less than zero for it.
Then paste the two columns down, clear the formulas, and check for errors.
- Paste the =COUNTIF formula from the secretion columns to count the differentially
expressed genes. Note that this doesn’t match the RStudio summary because we are
using a different threshold; At a 0.1 threshold, the counts do match.

Parsing DESeq results

- 77 -

- Look at the most significantly differentially expressed genes by sorting by P value
(A->Z), and then by one of the two categories (Z -> A):

- Scroll to the left to see the the InterProScan annotation data, which gives information
on the functions of these most significant genes:

Analyzing data

- For clustering, copy and paste the gene names and the FPKM values for each sample
into a new spreadsheet, then save as a tab-delimited text file. Renaming the long
sample names to shorter IDs will make the final cluster look nicer:

Saving data for clustering and functional enrichment testing

- 78 -

- For functional enrichment, we will need a “target” gene list of differentially expressed
genes. In the interest of time, we will just save the “higher in early” gene list. Sort the
spreadsheet by that column, then copy and paste all of the genes with “Y” values into a
new file, then save as a tab delimited text with no headers:

Saving data for clustering and functional enrichment testing

- Principal component analysis (PCA) is one approach for visualizing how expression
patterns vary across samples.
- Go back to R and find the PCA code section.
- DESeq has a built-in tool for running PCA that utilizes the dds object created earlier.

- These commands log transform the data, and then plot the PCA.
- Note that “intgroup” can be any column of the metadata file. Here we use “stage” to
give more detail on each sample, as opposed to just the two categories in
“Comparison1”.
- “ntop” defines the number of genes to use to calculate the PCA. Using too many low-
information genes may add noise to the clustering. The default is 500, but the results are
generally not sensitive to changing the number.

PCA from DESeq results

- 79 -

- After running these commands, the PCA plot will show up in the bottom-right panel.
- Clicking “Export” will allow you save this file. If you save as a PDF, you can edit the plot
directly in a vector-based image editing program (Adobe Illustrator, or “Inkscape”, which
is free).
- We will also export the plot
co-ordinates so that the data
can be replotted in Excel later.

PCA from DESeq results

- The following code will save the PCA coordinates into a file so that the data can be
graphed in other programs, and outputs the variance of each component, including
those not shown on the plot.

PCA from DESeq results

- 80 -

- PCA was calculated directly from the DEseq dataset, but we will use FPKM values for
hierarchical clustering.
- Run this code to load libraries and prepare the input files:

- If there is an error, check that the file names match.
- Next, we create a distance matrix. The statistic specified here determines the clustering
algorithm. Pearson or Spearman correlation is typically used for RNA-Seq data, and
“average” linkage is typically best for drawing the clusters:

Hierarchical clustering in RStudio

- The script includes two approaches for viewing the clustering:

- You can export one or both of these as PDF for future reference.
- Finally, the script exports a newick-format file for input into other clustering programs
(e.g. FigTree or ITOL):

Hierarchical clustering in RStudio

- 81 -

- Run the following to prepare the GO database:

- “Go_to_geneID.txt” is a pairwise GO and Gene list, generated from InterProScan
output in a different module.
- Producing this file is the difficult part about running enrichment on a custom genome.
Most tools (including GOSTATS) are designed to be easy to use primarily for model
organisms.

Functional enrichment using GOSTATS in RStudio

- Here we will input the complete (background) T. suis gene set, and our shorter target
gene set that we saved from Excel, based on the DESeq output:

- The remaining code runs the enrichment test and produces output. It is ran three times,
one for Biological Process (BP), one for Molecular Function (MF) and one for Cellular
Component (CC) Gene Ontology terms. Run all of this code to produce the three output
files:

Functional enrichment using GOSTATS in RStudio

- 82 -

- Open the “GOSTATS_output_MF.txt” file in the GOSTATS folder (Using Excel).
- As with DESeq output, shift the headers to the right by 1 column:

- The list is sorted by P value, with the most significant terms at the top. However, these
P values are not population-corrected, and this must be done manually for GOSTATS.
- We need to do correction because there are multiple tests being performed. A 5%
chance of being false is not acceptable when performing hundreds of tests.
- Generally, FDR correction is preferred for multiple-testing because it is a reasonable
balance of stringency. The most stringent approach is Bonferroni correction (multiplying
P values by the number of tests).

- For FDR, the most significant P value is multiplied by the number of tests. The second-
most significant P value is multiplied by the number of tests divided by two. The third-
most significant P value is multiple by the number of tests divided by three, etc.

Manual False Discovery Rate (FDR) correction

- This output file contains 314 tests. So the P values need to recalculated according to:
 P value * (314 / [rank of P value])

- We can accomplish this using the =RANK formula in Excel:
=RANK([value], [range of all values], [0 = Largest first, 1 = Smallest First])

- The formula shown will calculate FDR-corrected P values in column I. The threshold
value (0.01) will be applied on these FDR values.
- Some additional formatting will clean up the table and make it ready for publication:

Manual False Discovery Rate (FDR) correction

- 83 -

- Excel is a very useful program for
graphing data, since graphs are
easily customizable and interactive.
- We will go through the steps
required to create a publication-
quality scatterplot image of the
previously-generated differential
gene expression data.
- Note that within excel, graphs are
called “charts”. Also note that Excel,
particularly on Macs, can
sometimes be prone to crashing
when working with graphs. Be sure
to save frequently.

Graphing in Excel

- The points in a graph on it will stay linked to the data you enter. So, if data in the sheet
is re-sorted or changed, then the graph will automatically update. For this reason, we will
start by moving the data to be graphed onto a new separate sheet, where it won’t be
changed later:

- Copy and paste gene names, and all of the DESeq data from the main data sheet into
the new graph data sheet.
- Delete the fold change and P value columns by selecting the entire columns (by
clicking the letters on the border of the spreadsheet) and then right clicking and “delete”.
This data is not required to construct the graph.
- Add the sorting arrows, then sort the sheet by ‘higher in early’ and then ‘higher in late’,
so that the three categories of differential expression are in blocks in the table:

- Cut and paste this table into three sections: Higher in early, higher in late, and not
differentially expressed. This isn’t strictly necessary to construct the graph, but it is
helpful for organization. Copy and paste the headers to organize the data:

Graphing in Excel

- 84 -

- We will start by graphing the “not differentially expressed” genes as an X-Y scatterplot.
- Use Shift + command/CTRL to highlight the FPKM data down this entire column. Then,
under “charts”, choose “scatter” and then “Marked scatter” (with no lines):

- When you do this, Excel will generate a simple plot of the data, as an object on the
sheet. Right click the empty white space on the plot, select “Move Chart”, and then
specify a “new sheet” instead, so that it puts the chart on its own sheet:

Graphing in Excel

- The default chart is not formatted nicely, and may vary by version of Excel.
- Note that the order of the following formatting steps doesn’t matter.
- First, we will add axes labels. Under “chart layout”, select “axis titles”, and then click to
add a title below the X axis and a rotated title on the Y axis:

- Click on the axes titles to change the labels to something descriptive, usually with units
in parentheses:

- Next, click on empty white space in the corner of the sheet, to select the entire graph.
This will allow you to set a global font without adjusting each component manually. Arial
font is always acceptable for publication, so choose it, and choose size 16 font. This
large font size is necessary because graphs are rarely printed as a full page, but instead
are often shrunk into a single panel.

Graphing in Excel

- 85 -

- Remove horizontal gridlines by clicking on one of them and pressing the “delete” key
(backspace on windows). Double-click on the plot area and under “line”, choose black
for the color instead of “automatic”. This will put a border around the plot.

- We will now start to add the other two data series to
the graph.
- Right click on the plot area and then click “Select data”.

Graphing in Excel

Ignore this.

A list of the different series of data on
the graph. Each series can be
formatted independently.

The name of the selected series. If
blank, it will default to numbering.

Range of X values and range of Y
values for the selected series.

This only matters for graphs with
categories (not numbers) on the x axis.

- First, rename the existing series to “Not differentially expressed” (this is the data we
started the graph with).
- Click “add” to add a second series. Title the series (“Upregulated in late larval”), and
then click the red arrow beside the “X values” to select the x axis values for this series.

- Click back to the ‘FPKM GraphData’ tab, and highlight the X values (early larval) from
the “Upregulated in late larval” columns you previously set up:

- On windows, you can click on the first cell, and shift + CTRL down to select the entire
column. This doesn’t always work in the Mac version (a bug), so you may need to
either select with the mouse, or type in the range manually.

Graphing in Excel

- 86 -

- Once the data is selected, press enter or press the red arrow to return to the main data
selection menu. Repeat this process to select the Y values, and then add another series
for the “Upregulated in early larval” data, and add those x and y values.
- When all of this is finished, click “ok” to return to the graph.
- Note that if an error pops up when entering data, it is probably because you clicked in
multiple places, and it is expecting a single range of values. If this happens, delete
everything in the white box, and then click the red arrow again.

- Click OK to finish the data entry.

Graphing in Excel

- Resize and reposition the legend and the graph
to reduce empty white space.
- We will format the axes so that they display log
values instead of natural values. Start by double-
clicking on any of the numbers on the x axis.
- In the “scale” menu, check “Logarithmic scale”.
You will get a warning that zero values cannot be
displayed, which we will address shortly.
- Set the “vertical axis crosses at” value to 0.001,
so that the axes intersect on the corner.
- Repeat both of these steps for the y-axis,
except for the y axis, also set the “major unit” to
100, so that it matches the X axis.

- Although we do not need it for this graph, note
that this menu is where you can manually set the
minimum and maximum values for the plot.

- No

Graphing in Excel

- 87 -

- Next, we will format the data series points. Start by double clicking on one of the “not
differentially expressed” points. Note that if you single-click, and then double-click, you
will be formatting a single point and not the entire series. Ensure that the popup
window says “format data series” and not “format data point”.
- Go to “Marker style” and choose a circle, then set it to size 4. We make these points
small because we want the differentially expressed genes to stand out.
- Now choose “Marker line” and choose “no line”. This is for the border around each
point which we don’t want for this series.
- Go to “marker fill”, and set to black with 70% transparency. This will make the points
translucent, making it easier to tell where they overlap. Click ok to finish formatting.
- Repeat for the two upregulated gene sets, except choose a size 5 circle, a black
marker line, and a solid fill with no transparency (orange and blue).

Graphing in Excel

- Now, we will fix the zero values. Rather than not including points with zero
expression, we want them to show up along the axis. We will do this by changing all
zero values in the graph data to 0.001.
- Go back to the FPKM GraphData tab, and press “command/CTRL + F” to bring up
the “Find” dialog. From here, click “replace”, and check off “find entire cells only”. Use
this to replace all zero-value cells with 0.001. The graph will auto-update since the cell
references are still linked.
- Now, the points plotted along the axes
are zero-value, and not 0.001 as
indicated. This can either be mentioned
in the figure caption, or the 0.001 values
can later be covered up in imaging
software and replaced with 0 on the plot.

Graphing in Excel

- 88 -

- Finally, we will add a diagonal line to define where the x and y values are equal. To
do this, go back to the “select data” menu (right click the empty space on the graph).
- Now add another series called “Equal”. Manually type in the values 0.001,100000 to
both the x and y axis values, then click OK.

- Two points will show up in the corner. Double click one of them, then set the Marker
style to “no marker”, the “line” color to dark grey, and then click to the “weights &
arrows” dialog under the “line” menu. In that menu, set the weight to 2pt, and choose a
dashed line:

Graphing in Excel

- If “equal” shows up in the legend, click it and delete it.
- At this point, the graph is complete. This can be saved as a PDF file in the “save as”
menu, and imported as a vector-format image into other software.

Graphing in Excel

- You can make a copy of the graph
by right clicking the sheet tab at the
bottom, and choosing “Move or
Copy...”, and then specifying to
create a copy. This way, if you make
a second scatterplot, you can just
change the series data, and keep
all of the formatting.

- 89 -

Helpful resources for Section 2

•  List of RNA-seq bioinformatics tools:
•  https://en.wikipedia.org/wiki/List_of_RNA-Seq_bioinformatics_tools

•  khmer website and blog
•  http://khmer-protocols.readthedocs.org/en/v0.8.2/mrnaseq/index.html
•  http://ivory.idyll.org/blog/category/science.html

•  DESeq2
•  https://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/

doc/DESeq2.pdf
•  http://www.bioconductor.org/help/workflows/rnaseqGene/

•  GOstats
•  https://bioconductor.org/packages/release/bioc/vignettes/GOstats/inst/doc/

GOstatsHyperG.pdf

- 90 -

Section 3: Variome
Module 0: Re-sequencing genomes
!

Analysis of genetic variation is central to understanding population biology and
molecular epidemiology of helminth parasites. Studying genome variations within and
between populations can provide insights into geographical differentiation and gene flow,
transmission patterns and evolution of parasites. In addition, genome-wide association
studies (GWAS) and forward genetic screens (mapping-by-sequencing) can greatly
facilitate identification of genetic variants correlated with phenotypes of biomedical
interests (e.g., infection behavior, drug resistance, etc.)

NGS provides an unprecedented opportunity to characterize genetic variation in large
number of samples at a reasonable cost. Sequencing individuals at a high coverage is
the 'gold standard' for obtaining high-quality data, but budget constraints may require
alternatives for studying large populations. Reduced representation and pooled
sequencing approaches can be cost-efficient, but it is important to understand the
strengths and weaknesses of each method to strategically design your experiment.

The following modules in this section will help you understand how we can turn raw
sequencing data into reliable information about genetic variation.

Recommended reading:

DePristo, M. A., E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl, A. A.
Philippakis, G. del Angel, M. A. Rivas, M. Hanna, A. McKenna, T. J. Fennell, A. M.
Kernytsky, A. Y. Sivachenko, K. Cibulskis, S. B. Gabriel, D. Altshuler and M. J. Daly
(2011). "A framework for variation discovery and genotyping using next-generation DNA
sequencing data." Nat Genet 43(5): 491-498.

Nielsen, R., J. S. Paul, A. Albrechtsen and Y. S. Song (2011). "Genotype and SNP
calling from next-generation sequencing data." Nat Rev Genet 12(6): 443-451.

Schlotterer, C., R. Tobler, R. Kofler and V. Nolte (2014). "Sequencing pools of
individuals - mining genome-wide polymorphism data without big funding." Nat Rev
Genet 15(11): 749-763.

- 91 -

Variome – introduction (cont’d)

•  Not all mismatches are SNPs!

 Errors in library preparation/basecalling/mapping etc.

•  The basic idea behind finding probability of bases at a locus (genotype

likelihoods) using Bayes theorem

 P(A|B) = k X P(B|A) X P(A)

genotype

data

Error model

Prior on genotype
(e.g. P(G)=0.3 if GC content is 60%)

(or P(non-ref)=1e-4, if SNP rate is known to be 0.01%)
(or… any other “prior” constraint you know about)

Some SNP calling programs

 published citations

 CRISP 2010 92

 SNVer 2011 86

 Samtools 2011 176

 GATK 2011 >2000
(Genome Analysis Tool Kit)

 SomaticSniper 2012 128

 Varscan-2 2012 404

- 92 -

Genome Analysis Tool Kit

 Developed at The Broad Institute, Cambridge, MA

Installation: download directly from GATK website

Java Usage: a single jar file (except some preprocessing steps, which use bwa and
picard tools)

Help for anything related to GATK, available at GATK website (with Guide, tools
documentation and best practices)

Specifically, it is highly recommended to read the best practices before (or while)
using GATK:
https://www.broadinstitute.org/gatk/guide/best-practices

The use forums (http://gatkforums.broadinstitute.org/) are also great, with usually
very prompt responses by the GATK team

Before we start…

 All figures in Module 1 and 2 are courtesy GATK online material (used here with
permission)

Our dataset : 4 samples from male D. viviparus worms

We selected just 2 contigs for illustration (You will usually do this on the whole
genomes of your worm of interest, so your SNP calling will take more than the 2
hours we have here!)

Starting data :

 paired end reads in fastq format
 (“Section_3/module_1/bwa/reads/S1_1.fastq” etc)

 reference sequence and annotation
 (fasta, bed and gff3 files in “Section_3/reference” directory)

- 93 -

About GATK: Overall flow

Module 1

Module 2

Useful, but mostly feasible only
with well studied model organisms
So, we won’t be doing this here

GATK Process map

- 94 -

Section 3: Variome
Module 1: Processing and alignment

Preparing reference file
(You are here -> “Section_3/reference”)

bwa index reference.fasta

samtools faidx reference.fasta

java -jar ~/bin/picard-tools-1.101/
CreateSequenceDictionary.jar R=reference.fasta
O=reference.dict

Mapping using bwamem
(Section_3/module_1/bwa)

Important information about reads is also encoded simultaneously (library name,
sample name, read group etc). These are useful for analysis later.

cd ../module_1/bwa

for i in S1 S2 S3 S4;do bwa mem -t 8 -M -R "@RG
\tID:"$i"_RG1\tPL:illumina\tPU:"$i"_RG1_UNIT1\tLB:"$i"-
lib1\tSM:"$i ../../reference/reference.fasta
reads/"$i"_1.fastq reads/"$i"_2.fastq >"$i".bwa.1.sam;done

Preparing reference file and mapping

- 95 -

Duplicate reads

Marking Duplicates

For correct estimation of variant likelihoods, we need our reads to represent the
correct proportions of molecules in the library. (actually we also want our library to
represent the proportions of original biological sample, and should be wary of
biases introduced by PCR etc, but right now let’s worry only about making sure
we don’t sequence a molecule more than once). One way of doing this is finding
out which sequences are highly likely to originate from the same DNA fragment,
and then removing all but one of that set.

Recognizing duplicates

Marking Duplicates

Finding reads that start at the same location. And, if paired end, that have
their partners also mapping at the same starting location.

We can’t simply compare the read sequences because sequencing is error
prone and will likely lead to high underestimation of duplicates.

- 96 -

Removing Duplicates

(Section_3/module_1/bwa)

for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/picard.jar
MarkDuplicates MAX_FILE_HANDLES_FOR_READ_ENDS_MAP=1000
REMOVE_DUPLICATES=true INPUT="$i".bwa.sorted.bam
OUTPUT="$i".dedup.bam METRICS_FILE="$i".dedup_metrics
ASSUME_SORTED=true;done

Sort and convert to bam

for i in S1 S2 S3 S4;do samtools view -bS "$i".bwa.sam |
samtools sort - "$i".bwa.sorted;done

Removing duplicates with Picard tools

Then you can look at some examples of before-and-after deduplication reads/
alignment using “samtools faidx” and “samtools tview” (or IGV)

Refining Alignments

Read aligners like bwa etc look at every read independently and try to find the best
alignment for every read. This may lead to spurious SNPs because of slightly “off
target” mappings, especially in presence of small indels (e.g. left figure below).
Realigning all such reads in this region simultaneously by making use of multiple
sequence alignment algorithms leads to more concordant alignments. This gets rid of
many false positive SNPs which are merely mapping artifacts (right figure below)

- 97 -

Realignment around indels

(Section_3/module_1/bwa)

Realign in these loci

for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T IndelRealigner -R ~/WORKSHOP_RESOURCES/
Section_3/reference/reference.fasta -I "$i".dedup.bam -
targetIntervals "$i".realignment.intervals -o
"$i".dedup.realigned.bam;done

Index our de-duplicated bam files

for i in S1 S2 S3 S4;do samtools index "$i".dedup.bam;done

Find intervals to analyze

for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T RealignerTargetCreator -R ~/
WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -I
"$i".dedup.bam -o "$i".realignment.intervals;done

Base Recalibration (in presence of a truth set)

Paired end Hiseq data

To improve base quality values, mismatches with reference are analyzed.
Assuming that any mismatch which isn’t a known SNP is an “error”, base qualities
can be readjusted to more closely model the reality (removing systematic errors in
original base quality reports).

However, this can only be done in the presence of a substantial set of known True
Positives (i.e. a large set of known SNPs). Since we don’t have that (yet), we’ll
skip this and come back to it later…

The figure below shows the result of recalibrating errors from original reported
qualities to those obtained using mapping data (after filtering out known SNPs).

- 98 -

Section 3: Variome
Module 2: Variant calling

Introduction

HaplotypeCaller is the workhorse of GATK’s variant calling process. It calls variants
by assembling reads in “active regions” into haplotypes (completely independent of
reference sequence mapping) and then estimating likelihoods of genotypes at
variant loci based on how well each read represents those assembled haplotypes.

- 99 -

Running HaplotypeCaller
(Section_3/module_2/haplo)

for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T HaplotypeCaller -R ~/
WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -I
"$i".dedup.realigned.bam -ERC GVCF -ploidy 2 -o
"$i".dedup.g.vcf;done

Prepare files

cd ../../module_2
mkdir haplo
cd haplo

for i in S1 S2 S3 S4;do ln -s ../../module_1/
bwa/"$i".dedup.realigned.bam;done

for i in S1 S2 S3 S4;do ln -s ../../module_1/
bwa/"$i".dedup.realigned.bai;done

Run HaplotypeCaller with GVCF

Some default settings for HaplotypeCaller

--maxReadsInRegionPerSample 10000

--min_base_quality_score 10

--minReadsPerAlignmentStart 10

--sample_ploidy 2

--standard_min_confidence_threshold_for_calling 30.0

--standard_min_confidence_threshold_for_emitting 30.0

--max_alternate_alleles 6

--maxNumHaplotypesInPopulation 128

 See Details at

https://www.broadinstitute.org/gatk/gatkdocs/
org_broadinstitute_gatk_tools_walkers_haplotypecaller_HaplotypeCaller.php

- 100 -

The VCF file format

Full details: https://samtools.github.io/hts-specs/
VCFv4.2.pdf

##fileformat=VCFv4.1
##ALT=<ID=NON_REF,Description="Represents any possible alternative allele at this location">
##FILTER=<ID=LowQual,Description="Low quality">
##FORMAT=<ID=AD,Number=.,Type=Integer,Description="Allelic depths for the ref and alt alleles in the order listed">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth (reads with MQ=255 or with bad mates are
filtered)”>
##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for each ALT allele, in the same order as
listed">
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency, for each ALT allele, in the same order as listed">
##contig=<ID=D_viviparus-1.0_Cont486,length=89705>
##contig=<ID=D_viviparus-1.0_Cont375,length=119898>
##reference=file:///home/ec2-user/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT S1 S2 S3 S4
D_viviparus-1.0_Cont486 255 . T C 2156.88 .

 AC=2;AF=0.250;AN=8;DP=168;FS=0.000;MLEAC=2;MLEAF=0.250;MQ=60.00;QD=29.09;SOR=0.818
 GT:AD:DP:GQ:PGT:PID:PL 1/1:0,49:49:99:1|1:255_T_C:2197,147,0 0/0:35,0:35:99:.:.:0,99,1485
 0/0:39,0:39:99:.:.:0,102,1497 0/0:44,0:44:99:.:.:0,100,1742

An example

Using GVCFs to combine sample-wise variants

##fileformat=VCFv4.1
.
.
.
##GVCFBlock0-1=minGQ=0(inclusive),maxGQ=1(exclusive)
##GVCFBlock1-2=minGQ=1(inclusive),maxGQ=2(exclusive)
.
.
.
#CHROM POS ID REF ALT QUAL FILTER

 INFO FORMAT S1 S2 S3 S4
D_viviparus-1.0_Cont486 1 . A <NON_REF> . .

 END=4 GT:DP:GQ:MIN_DP:PL 0/0:17:48:17:0,48,720
D_viviparus-1.0_Cont486 5 . T <NON_REF> . .

 END=5 GT:DP:GQ:MIN_DP:PL 0/0:18:31:18:0,31,669
D_viviparus-1.0_Cont486 6 . G <NON_REF> . .

 END=9 GT:DP:GQ:MIN_DP:PL 0/0:18:51:18:0,51,765
.
.
.

(Section_3/module_2/haplo)
java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T GenotypeGVCFs -R
~/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta $(for
i in S1 S2 S3 S4;do echo -n "--variant "$i".dedup.g.vcf ";done)
-o all_raw.vcf

- 101 -

Variant Quality recalibration for refinement

To get a higher confidence set of real SNPs, we can look at a truth set (if we
have one) of real SNPs and analyze what values various relevant metrics take
for them. e.g. you may just pick up very rare (and potentially spurious) SNPs
just because of very high depth of coverage. Looking at various metrics
(Variant quality score/Depth, strand bias etc) may separate real SNPs with
False Positives (figures below).

So, first we calibrate using known SNPs, then use those calibrations to filter
out potential False Positives and obtain a final analysis-ready variant set.

Using hard filters

However, last page is useless for us since we don’t actually have a truth set.

We still want to set up a filter to refine our raw variant set. So, we’ll use some hard
filters (i.e. thresholds pre-decided rather than dynamically calibrated based on data).
We will use values recommended by GATK best practices, though these numbers
can be changed based on any insight you may have into your specific case.

QD : Quality by Depth < 2.0
FS : FisherStrand > 60.0
MQ : RMS Mapping Quality < 40.0
MQRankSum : Mapping Quality Rank Sum < -12.5
ReadPosRankSum : Read Position Rank Sum < -8.0

In addition, we will also apply a depth of coverage filter (even though GATK team
advises that it isn’t as critical with HaplotypeCaller as with its older and almost
obsolete cousin “UnifiedGenotyper”). We just want high confidence SNPs to
generate a raw “truth set”. So, we’ll apply a relatively strict Depth filter. GATK used to
suggest Depth of Coverage (DP) > (mean+5*sd).

We will use DP > (median + 2*MAD)

- 102 -

Setting stage for filtering SNPs

Collecting SNPs and getting coverage

(Section_3/module_2/var_filt)

Prepare Files

cd ..
mkdir var_filt
cd var_filt/
ln -s ../haplo/all_raw.vcf

Extract SNPs from the “raw” vcf file

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T
SelectVariants -R ~/WORKSHOP_RESOURCES/Section_3/
reference/reference.fasta -V all_raw.vcf -selectType SNP -
o raw_snps.vcf

Getting DP filter threshold

Collecting SNPs and getting coverage

(Section_3/module_2/var_filt)

Finding base-wise coverages over the reference contigs (in order to find the
DP filter threshold)
for i in S1 S2 S3 S4;do ln -s ../../module_1/
bwa/"$i".dedup.realigned.bam;done

for i in S1 S2 S3 S4;do coverageBed -abam
"$i".dedup.realigned.bam -b ../../reference/
reference.fasta.bed -d >"$i".coverage.bed;done

We will find the median and MAD (median absolute deviation) in R. This is done after
adding the depths over all the samples:

S1<-read.table("S1.coverage.bed",header=F,stringsAsFactors=F)
S2<-read.table("S2.coverage.bed",header=F,stringsAsFactors=F)
S3<-read.table("S3.coverage.bed",header=F,stringsAsFactors=F)
S4<-read.table("S4.coverage.bed",header=F,stringsAsFactors=F)
sum<-S1$V6+S2$V6+S3$V6+S4$V6
summary(sum[sum<=(median(sum)+(2*mad(sum)))])

- 103 -

Applying SNP filters

Since we are only using DP to get a strict set for the purpose of base recalibration,
we are sloppy here and using bedtools coveragebed utility to get coverage (also,
partly because we want to introduce you to the convenient and useful coveragebed
utility). If you really want to get proper depth numbers to set your DP filter, you
should use the DepthofCoverage tool of GATK itself (as it takes care of any base
filters that are applied in GATK before counting depths).

Also, remember that DP doesn’t need to be used with HaplotypeCaller, and we
won’t use it to get our final SNP set anyway.

Now, we can apply our SNP filter!
java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T
VariantFiltration -R ~/WORKSHOP_RESOURCES/Section_3/
reference/reference.fasta -V raw_snps.vcf -o
raw_snps_filtered.vcf --filterExpression " QD < 2.0 " --
filterName "QD" --filterExpression " FS > 60.0 " --
filterName "FS" --filterExpression " MQ < 40.0 " --filterName
"MQ" --filterExpression " MQRankSum < -12.5 " --filterName
"MQRankSum" --filterExpression " ReadPosRankSum < -8.0 " --
filterName "ReadPosRankSum" --filterExpression " DP > 268 "
--filterName "DP"

Applying indel filters

(Section_3/module_2/var_filt)

Now, we’ll repeat filtering with indels too (using separate thresholds recommended by
GATK best practices)

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T SelectVariants
-R ~/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -V
all_raw.vcf -selectType INDEL -o raw_indels.vcf

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T
VariantFiltration -R ~/WORKSHOP_RESOURCES/Section_3/reference/
reference.fasta -V raw_indels.vcf -o raw_indels_filtered.vcf
--filterExpression " QD < 2.0 " --filterName "QD" --
filterExpression " FS > 200.0 " --filterName "FS" --
filterExpression " ReadPosRankSum < -20.0 " --filterName
"ReadPosRankSum"

- 104 -

Combining variants

(Section_3/module_2/var_filt)

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T
CombineVariants -R ~/WORKSHOP_RESOURCES/Section_3/
reference/reference.fasta --variant raw_snps_filtered.vcf
--variant raw_indels_filtered.vcf -o
raw_combined_filtered.vcf -genotypeMergeOptions UNSORTED --
printComplexMerges

We can now combine the SNPs and indels into a single variants file that
can be used as a “truth set” to recalibrate bases (that we talked about in
Module 1)

Using Variant set for base quality recalibration

Prepare Files, get recalibration data and apply it to update base quality
values

cd ../../module_1/bwa
ln -s ../../module_2/var_filt/raw_combined_filtered.vcf

for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T BaseRecalibrator -R ~/
WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -I
"$i".dedup.realigned.bam -knownSites raw_combined_filtered.vcf
-o "$i".recal_data.table;done

for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T PrintReads -R ~/WORKSHOP_RESOURCES/
Section_3/reference/reference.fasta -I
"$i".dedup.realigned.bam -BQSR "$i".recal_data.table -o
"$i".recal_reads.bam;done

(Section_3/module_1/bwa)

- 105 -

Variant Calling again

cd ../../module_2/haplo

for i in S1 S2 S3 S4;do ln -s ../../module_1/
bwa/"$i".recal_reads.bam;done
for i in S1 S2 S3 S4;do ln -s ../../module_1/
bwa/"$i".recal_reads.bai;done

for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T HaplotypeCaller -R ~/WORKSHOP_RESOURCES/
Section_3/reference/reference.fasta -I "$i".recal_reads.bam -ERC
GVCF -ploidy 2 -o "$i".recal.g.vcf -bamout
"$i".recal.haplo.bam ;done

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T GenotypeGVCFs -R ~/
WORKSHOP_RESOURCES/Section_3/reference/reference.fasta $(for i in
S1 S2 S3 S4;do echo -n "--variant "$i".recal.g.vcf ";done) -o
all_recal.vcf

With this presumably better set of base qualities, we’ll repeat our earlier steps for
variant calling (i.e. haplotypecaller followed by combining the sample GVCFs)

(Section_3/module_2/haplo)

“-bamout” option is just to get a bam file which can then be visualized using IGV
or “samtools tview” if you want to look at something closely.

Final SNPs hard filtering

cd ../var_filt/
ln -s ../haplo/all_recal.vcf

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T SelectVariants -R
~/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -V
all_recal.vcf -selectType SNP -o recal_snps.vcf

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T VariantFiltration
-R ~/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -V
recal_snps.vcf -o recal_snps_filtered.vcf --filterExpression " QD
< 2.0 " --filterName "QD" --filterExpression " FS > 60.0 " --
filterName "FS" --filterExpression " MQ < 40.0 " --filterName "MQ"
--filterExpression " MQRankSum < -12.5 " --filterName "MQRankSum"
--filterExpression " ReadPosRankSum < -8.0 " --filterName
"ReadPosRankSum”

We will again filter the variants with the hard filters introduced before. While we
will stop here for the demonstration, usually one wants to see some sort of
convergence of results before stopping. So, if you see a significant change in the
number of variants detected as compared to the last round, you can do the same
cycle all over again (i.e. using SNPs to recalibrate bases followed by calling and
filtering variants again)

(Section_3/module_2/var_filt)

- 106 -

Final indel hard filtering

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T SelectVariants
-R ~/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -V
all_recal.vcf -selectType INDEL -o recal_indels.vcf

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T
VariantFiltration -R ~/WORKSHOP_RESOURCES/Section_3/reference/
reference.fasta -V recal_indels.vcf -o
recal_indels_filtered.vcf --filterExpression " QD < 2.0 " --
filterName "QD" --filterExpression " FS > 200.0 " --filterName
"FS" --filterExpression " ReadPosRankSum < -20.0 " --filterName
"ReadPosRankSum”

We do apply hard filters for indels again.

(Section_3/module_2/var_filt)

Combining variants for further analysis

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T
CombineVariants -R ~/WORKSHOP_RESOURCES/Section_3/reference/
reference.fasta --variant recal_snps_filtered.vcf --variant
recal_indels_filtered.vcf -o recal_combined_filtered.vcf -
genotypeMergeOptions UNSORTED --printComplexMerges

As said before, you should compare the change in variants after this round of
recalibration and calling (but we will move on to Module 4 regardless of the
change!)

Combining SNPs and indels gives a common variant file which can be used for
further analysis. In our case, we have a pre-generated file which will be used in
Module 4

- 107 -

Section 3: Variome
Module 2: Variant calling (cont’ ed)
!

Visualization of variants
Variants in VCF format can be visualized using the Integrative Genomics Viewer (IGV), a
high-performance visualization tool for interactive exploration of large, integrated
genomic datasets (http://www.broadinstitute.org/igv/). IGV supports a wide variety of
data types, including next-generation sequence data and genomic annotations.

Options for installing and running IGV
(http://www.broadinstitute.org/software/igv/download)

1. (Mac only) Download and run the Mac application; or
2. (All systems) Use the Java Web Start buttons; or
2. (All systems) Download the binary distribution and run IGV from the command line.

Creating a .genome File
1. Click Genomes>Create .genome File. IGV displays a window where you enter the
information.
2. Enter an ID and a descriptive name for the genome (e.g., D_viviparus).
3. Enter the path to the FASTA file for the genome (reference.fasta). If the FASTA
file has not already been indexed, an index will be created during the import process.
This will generate a file with a ".fai" extension which must be in the same directory as the
FASTA file.
4. Specify the gene file (reference.gff3).
5. Click Save. IGV displays the Genome Archive window.
6. Select the directory in which to save the genome archive (*.genome) file and click
Save. IGV saves the genome and loads it into IGV.

Loading data
1. Select File>Load from File. IGV displays the Select Files window.
2. Select one or more data files or sample information files, then click OK.

Please load the following files:

recal_combined_filtered.vcf
S1.recal.haplo.bam
S1.dedup.realigned.bam

!
Section 3: Variome
Module 3: Variant annotation
!

Using SnpEff (http://snpeff.sourceforge.net), we will annotate and predict the effects of
variants on genes (such as amino acid changes). SnpEff is written in Java and runs on
Unix/Linux, OSX and Windows. It accepts input files in VCF/BED format, and can
provide consequence terms defined by the Sequence Ontology

- 108 -

(http://www.sequenceontology.org) and in HGVS notation
(http://www.hgvs.org/mutnomen/).

Building databases
SnpEff needs a database to perform genomic annotations. In order to build a database
for a new genome, you need to:

1. Configure a new genome in SnpEff's config file.
1a. Add genome entry to snpEff's configuration by editing the snpEff.config file.

gedit ~/bin/snpEff/snpEff.config

Add the following lines, save the file and exit gedit.

Dictyocaulus_viviparus
D_viviparus.genome : Dictyocaulus_viviparus

1b (optional). If the genome uses a non-standard codon table, add codon table
parameter. Please see SnpEff documentation for detail
(http://snpeff.sourceforge.net/SnpEff_manual.html).

2. Create a directory for this new genome.

mkdir ~/bin/snpEff/data/D_viviparus/

3. Get the reference genome sequence in FASTA format.

ln -s ~/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta
~/bin/snpEff/data/D_viviparus/sequences.fa

4. Get genome annotations from GFF file.

ln -s ~/WORKSHOP_RESOURCES/Section_3/reference/reference.gff3
~/bin/snpEff/data/D_viviparus/genes.gff

5. Build a SnpEff database.

java -Xmx8g -jar ~/bin/snpEff.jar build -gff3 -v D_viviparus

You can check the database to see if the features (genes, exons, UTRs, etc.) have been
correctly incorporated, by taking a look at the database.

java -Xmx8g -jar ~/bin/snpEff.jar dump D_viviparus | less

Running SnpEff

1. Change directory to where the SnpEff output files will be saved.

cd ~/WORKSHOP_RESOURCES/Section_3/module_3

- 109 -

2. You can annotate the vcf file by running the following command. Command line option
–v switches on the "verbose" mode, which can be useful for debugging.

java -Xmx8g -jar ~/bin/snpEff.jar -v D_viviparus
~/WORKSHOP_RESOURCES/Section_3/module_2/var_filt/recal_combined_f
iltered.vcf > recal_combined_filtered.eff.vcf

SnpEff adds annotation information (‘ANN’ tag) to the INFO field of a VCF file. The INFO
field is the eighth column of a VCF file. SnpEff updates the header of the VCF file to add
the command line options used to annotate the file as well as SnpEff's version, so you
can keep track of what exactly was done.

less recal_combined_filtered.eff.vcf

3. SnpEff creates an additional output file showing overall statistics. This "stats" file is an
HTML file, which can be opened using a web browser.

chrome snpEff_summary.html

4. SnpEff also generates a (tab separated) TXT file having counts of number of variants
affecting each transcript and gene.

head snpEff_genes.txt

Filter and manipulate annotated VCF files using SnpSift

1. Once your genomic variants have been annotated, you need to filter them out in order
to find the "interesting/relevant variants". SnpSift helps to perform this VCF file
manipulation and filtering. It can be used to extract fields from a VCF file to a tab
separated TXT format that you can easily load in R, Excel, etc.

cat recal_combined_filtered.eff.vcf |
~/bin/snpEff/scripts/vcfEffOnePerLine.pl | java -Xmx8g -jar
~/bin/SnpSift.jar extractFields - CHROM POS REF ALT AF
"ANN[*].ALLELE" "ANN[*].EFFECT" "ANN[*].IMPACT" "ANN[*].GENE"
"ANN[*].HGVS_C" "ANN[*].HGVS_P" > recal_combined_filtered.eff.txt

head recal_combined_filtered.eff.txt

2. You can now easily list, for instance, the coding variants identified in your genes of
interest (e.g., DICVIV_10165 and DICVIV_11294)

cat recal_combined_filtered.eff.txt | grep -v "MODIFIER" | grep -
E "DICVIV_10165|DICVIV_11294"

- 110 -

Section 4: Final topics
Module 0: Finding sequence resources
!

If you’re looking for genomic sequence data, two of the best public resources available to you
are the Ensembl websites and NCBI’s GenBank. Ensembl maintains a collection of websites
organized by higher order taxonomy: Ensembl, Ensembl Metazoa, Ensembl Bacteria, Ensembl
Protists, Ensembl Fungi, Ensembl Plants, etc… while GenBank’s website is a single entity.
Both provide the ability to locate and download genome sequence and annotation. For most of
your data needs these two sites will be your go-to resources

For Helminth specific data, your best bet will be one of the more specialized websites such as
WormBase, WormBase Parasite, and our own Helminth.net websites (Nematode.net &
Trematode.net). For genomic sequence data and gene annotation, the WormBase sites are
very well organized and have a lot of worm data available. For worm model organisms such as
C.elegans, the original WormBase maintains a trove of curated annotation. WormBase Parasite
maintains a broad collection of genomic sequence and gene annotation on most of the currently
studied parasitic helminthes. And the Helminth.net sites are a good source for finding higher
order analysis and annotation.

Useful Information:
(Ensembl) http://useast.ensembl.org/index.html?redirect=no
(Ensembl Metazoa) http://metazoa.ensembl.org/index.html
(NCBI GenBank) http://www.ncbi.nlm.nih.gov/genbank/
(NCBI SRA) http://www.ncbi.nlm.nih.gov/sra
(Helminth.net) http://helminth.net
(WormBase Parasite) http://parasite.wormbase.org/index.html
(WormBase) http://www.wormbase.org

Section 4: Final topics
Module 1: Bioinformatics packages
!

By now you’ve probably realized that many of the workhorse tasks used by computational
biologists already have publicly available, robust solutions. The links provided below take you to
documentation for some of the packages we find most useful. When faced with a new analysis
task, scan the overviews of these packages, google search, or just ask around. You’ll often find
that some imposing problem you are faced with has a very simple, packaged tool already
available!

One resource of special note is the Galaxy platform. It’s a web-based platform for developing
and running bioinformatics workflows. While not appropriate for large scale processing of data,
for most projects involving just a handful of samples it works very well. The Galaxy project itself
developed the Galaxy platform, and their intent is for other labs to take their software and setup
their own resources for others to use. But the developers themselves maintain a fantastically
full featured Galaxy site themselves!

- 111 -

Useful Information:
(samtools) http://samtools.sourceforge.net
(picard) http://broadinstitute.github.io/picard/
(bedtools) http://bedtools.readthedocs.org/en/latest/
(bamtools) https://github.com/pezmaster31/bamtools/wiki/Using-the-toolkit
(list of RNA-Seq bioinformatics tools) https://en.wikipedia.org/wiki/List_of_RNA-
Seq_bioinformatics_tools
(Galaxy) https://usegalaxy.org
!

Section 4: Final topics
Module 2: Sources of help for bioinformaticians
!

Good places to turn if you need bioinformatics help are:

1) SeqAnswers – bioinformatics forum
2) Biostars forum
3) Google!

Useful information:
(SeqAnswers – bioinformatics forum) http://seqanswers.com/forums/forumdisplay.php?f=18
(Biostars forum) https://www.biostars.org
!

Section 4: Final topics
Module 3: Open discussion
!

Open discussion and specific questions.
!

- 112 -

	01-HelminthGenomicsBioinformaticsWorkshop_Curriculum_TableOfContent V2
	02-Section0_Module0
	03-Section1_Module1-3
	04-Section1_Module4_6_V2
	05-Section2_Module0-2
	06-Section2_Module3
	07_Section3_Module0
	08_ Section3_Modules1_2
	09_Section3_Module2-3
	10_Section4_Module0_3

