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Section 0: Cloud Computing 
Module 0: Introduction to cloud computing using Amazon’s AWS 
!
 
                    
Introduction 
This document contains command lines & information that will be helpful to you during the 
workshop. Think of it as CliffsNotes for the material being presented.  It will be helpful to have 
this document open electronically while following along with the demonstrations for copy-pasting 
the command lines.!!!
!
Command lines will be!printed in a distinctive font to make them stand 
out from other text. 
 
In this module you will learn the basics of cloud computing, and a little bit about how we’ll be 
taking advantage of Amazon’s AWS.   You’ll connect to your EC2 instance and we’ll show you  
have to transfer files to and from the EC2 instance.  Finally we’ll download some files that will be 
needed during later parts of the class. 
 
Cloud computing 
This phrase refers to the use of remote hardware resources (CPU, memory, disk space, etc…) 
from a local platform (your laptop,  a lab workstation, a desktop in your home, etc…).   Cloud 
computing  enables users with limited local resources to have access to powerful computer 
hardware, and only pay for the resources they actually consume.  Some examples of 
commercially available cloud computing services are Amazon’s AWS, Google’s Compute 
Engine, Microsoft’s Azure & IBM’s Bluemix. 
 
Virtual Machines 
A Virtual Machine (VM) is a software emulation of a computer running an operating system.  
Because the processes occurring within a VM are entirely software, it’s possible to ‘save’ a 
virtual machine’s current state by taking a ‘snapshot’ of the running software and saving it to 
disk.    
 
That snapshot is called an ‘image’ of the running VM.  This image can then be restarted at a 
later time to restore the exact state of the original VM.  Its possible to launch multiple copies of 
an image, creating many ‘instances’ of that parent image, all running in the same state as the 
original VM when the snapshot was taken. 

 
Workshop image and student instances 
To prepare for this workshop we launched a 
VM on the Amazon EC2 service.   We 
started with a pre-built image from Amazon 
that had Red Hat Enterprise Linux 7.1 
already installed.  We launched one 
instance of that basic starting image on the 
cloud and then loaded all the software and 
data files we wanted to provide for the 
course.  Once everything was loaded and 
tested we took a snapshot and saved it as 
our workshop image.  Before the workshop 
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starts on day 1, we’ll be launching one instance for each attending student.  Each student will 
then log into their own working instance in which they will follow along with the demonstrations 
we’ll be showing.  
 
Connecting to a running EC2 instance 
Here is how to connect to your personal EC2 instance.  You should have received an email from 
which you can find your specific instance address. You should also have received the public key 
file as an attachment to that email.   You’ll need to save the key to your laptop and remember its 
location. We suggest creating a WORKSHOP folder on your laptop’s desktop, and then saving 
the key in that location.   There will be several parts of the workshop that will involve 
downloading data and running tools locally, on your laptop.  For convenience we suggest 
keeping all workshop related files inside this WORKSHOP folder on your desktop. 
 
Launch your terminal program (MAC users can use ‘Terminal’, and WIN users can use 
MobaXTerm).   Then from inside that terminal run these commands 
 
0.0.1 (MAC): cd /Users/<your_username>/Desktop 
0.0.1 (WIN): cd /home/mobaxterm/Desktop 
 
0.0.2: mkdir WORKSHOP 
0.0.3: cd WORKSHOP 
 
Save the PublicKey150713.pem file into this location now, then back in the terminal, change the 
permission on the public key file 
 
0.0.4: chmod 400 PublicKey150713.pem 
!
0.0.5: ssh –YC –c blowfish-cbc,arcfour –i PublicKey150713.pem ec2-
user@<instance address> 
*note: Replace “<instance address>” with your personal instance 
address that was emailed to you 
 
A special note for laptop users without access to mouse buttons, which will be needed to copy-
paste commands for many of the demonstrations.   Here is how to enable ‘three button mouse’ 
clicking on a Mac 
!
0.0.6 (MAC): pull XQuartz to the front 
0.0.7 (MAC): Open the X11 menu and select ‘Preferences’ 
0.0.8 (MAC): Check the ‘Emulate three button mouse’ box 
!
For Windows users, here is how to enable copy-paste via the right-click menu 
 
0.0.6 (WIN): Select ‘configuration’ from the settings menu 
0.0.7 (WIN): Select the X11 tab 
0.0.8 (WIN): Set the Clipboard setting to ‘enabled’ 
*note: This will either be a drop menu or a checkbox for ‘Shared 
clipboard’ that you need to check 
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Uploading and Downloading from an EC2 instance 
 
Here is how to copy files from your laptop to the EC2 instance 
!
scp –i <path to public key> <file on laptop> ec2-user@<instance 
address>:<path to destination on EC2> 
 
And here is how to copy files from the EC2 instance to your laptop 
!
scp –i <path to public key> ec2-user@<instance address>:<path to file 
on EC2> <path to destination on laptop> 
 
You can also use scp to copy entire directories and their contents using the –r (recursive) 
argument: 
 
scp –r –i <path to public key> ec2-user@<instance address>:<path to 
directory on EC2> <path to destination on laptop> 
 
We have a couple of compressed tar files containing data files & resources you’ll need for later 
sections of this class that need to be downloaded to your laptop.  First open a 2nd terminal 
window on your laptop, because we conveniently have the full address of the EC2 instance, its 
easiest to do these copies while sitting on the laptop side of the cloud 
 
0.0.9 (MAC): cd /Users/<your_username>/Desktop/WORKSHOP 
0.0.9 (WIN): cd /home/mobaxterm/Desktop/WORKSHOP 
 
Then use scp to download the wanted data files 
 
0.0.10: scp –I PublicKey150713.pem ec2-
user@<instance_address>:~/WORKSHOP_RESOURCES/SECTION_2.tgz . 
0.0.11: scp –I PublicKey150713.pem ec2-
user@<instance_address>:~/WORKSHOP_RESOURCES/SECTION_3.tgz . 
 
Useful information: 
(Amazon’s documentation on EC2) https://aws.amazon.com/ec2/ 
!
 
!
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Section 1: Genome 
Module 1: Sequencing platforms 
!
 
In this module, we’ll introduce you to several of the sequencing platforms in use at our center 
and we’ll look into what makes these systems unique, and what traits may be important to you 
when you are deciding which platform(s) to use for your project. We’ll also talk about the 
specific case of the data we’ll be using during the genomic section of this workshop. We’ll 
describe the format in which it comes off the sequencing machine, and we’ll look at one method 
we use for assessing the quality of raw data. 
 
Illumina sequence-by-synthesis 
The Illumina sequencers primarily use a sequence-by-synthesis approach, using fluorescently 
labeled reversible-terminator nucleotides on clonally amplified DNA templates that are 
immobilized on an acrylamide coating on the surface of a glass flowcell. As nucleotides are 
incorporated onto the growing molecule attached to the flowcell, they release pulses of light that 
are captured by the sequencer and processed to derive base sequence. 
 
 

!
!
 
Pacific Biosciences (PacBio) sequencing 
PacBio’s sequencing method is dubbed Single Molecule Real Time (SMRT) sequencing. DNA 
polymerase molecules, bound to a dna template, are attached to the bottom of 50nm wells 
termed Zero-Mode Waveguides (ZMWs). Each ZMW is small enough to see a single nucleotide 
being incorporated by the bound polymerase. Each of the four bases is attached to a unique 
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fluorescent dye, and when a nucleotide is incorporated the fluorescent tag is released and 
diffuses away from the observable area in the ZMW. A detector watches these fluorescent 
signals are records the fluorescence to determine the base incorporated. These fluorescences 
and their intensity are recorded over time, and these kinetics are used to calculate the base 
sequence. 
!

!
!
!
Comparing capabilities 
Each of these systems brings unique strengths to the table, and careful thought should go into 
your choice of sequencing platform for any given project. 
 
For example, the Illumina platform (HiSeq2500 1T) is good for de novo genome sequencing if 
large insert size libraries used to facilitate scaffolding. However, in case of highly repetitive 
genomes, polymorphic genomes, or sequencing a population of individuals, the short Illumina 
reads would not provide optimal results. In such cases, one would need to use long read 
sequencing platforms such as the PacBio sequencers, and generate de novo PacBio assembly 
or hybrid Illumina/PacBio assembly. Illumina platforms are suitable for cost-effective re-
sequencing of isolates if a reference genome is already available and the rapid run of 
HiSeq2500 (27hrs vs 6 days) or MiSeq (21 days) could be used (depending on the amount of 
sequence data needed to be generated) as a time-efficient platform.  
 
Data used in ‘Section 1: Genome’ 
The data we’ll be using for the genomic section of the workshop is from the pig whipworm 
Trichuris suis which was chosen for its relatively small size compared to other worm genomes 
(~80Mb). For expediency’s sake, some of the demonstrations will only use a subset of the full 
dataset that would normally be involved in the genomic analysis of a standard helminth. We’ll 
also fast-forward through some of the lengthier steps and simply move to finished data after 
showing you how to start the programs involved in each step. 
!
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Getting data off the sequencing machine 
Our T. suis data was sequenced on a HiSeq 2000 machine. That machine (as with all Illumina 
platforms) first generates sequence data in a format called ‘Bcl’. Bcl is a binary format that 
contains base calls and quality scores, but is only machine readable and not anything a typical 
user will interact with directly. Illumina’s Real-Time Analysis (RTA) software calls and records 
the series of cycle-specific cluster images per spot on the flowcell and converts that image data 
into bases and quality values in the Bcl file. It then converts that Bcl file into paired end fastq 
format using another Illumina program called ‘bcl2fastq’. These paired-end fastq files are the 
starting point for our analysis. 
!
An introduction to the Fastq format 
While we plan to cover the common sequencing data formats in module 2 of this section, its 
useful at this point to introduce the fastq data format. 
 
Fastq is a plain-text-based file format that contains exactly four lines per sequence record. It 
starts with a header line, followed by the nucleotide sequence. Then is typically a line containing 
a plus sign (+), and finally a line containing encoded quality values: 
 
@K5HV3:00029:00029 
AAAAAGGGTAAAAACGATCGTCACAGG 
+ 
AB>>(44*44;;:/:447444C765?@- 
 
The sequence and quality lines must be of the same length (i.e. one quality value per base), 
and the third line (beginning with a ‘+’) is allowed to contain test (sometimes you may see this 
third line repeat the sequence header line after the starting plus sign). The quality values in line 
4 are encoded such that each numeric value can be represented by a single character. This 
coding involves converting these quality scores to ascii characters.  
 
Fastq files only support nucleotide sequence data, the format is not meant to house amino acid 
sequence. ‘Paired end’ fastq usually refers to a set of two fastq files with each file containing the 
sequencing data for each end of each read fragment. Very importantly, these ends must be 
ordered identically. There is an alternate form of paired end fastq in which the sequence of each 
end of the read fragment are kept one after the other within a single fastq file. This format is 
called ‘interleaved’ fastq. 
 
Assessing the quality of newly generated fastq 
We’ll use the program FastQC to check out the quality of the paired end fastq we’ll be using for 
the next few modules of this section. The FastQC program works on fastq files (as well as sam 
and bam files, which we’ll discuss in the next module) and runs a number of quality control 
metrics we can use to assess sequencing data. Its important to remember that while FastQC 
uses hard, fast rules to determine when to flag a quality metric with a warning or fail notice, 
those warning and fail notices do NOT always mean your data is bad. A simple example of this 
is if you have sequence data from a polyA primed sequencing library, FastQC will likely throw 
up a fail flag for Kmer Content and possibly for Overrepresented Sequences because many 
reads will have strings of the base ‘A’. You need to review FastQC results thoughtfully and with 
awareness of the data you are checking. 
 
Here is how to run FastQC: 
!
1.1.1: cd ~/WORKSHOP_RESOURCES/Section_1/module_1/QC_sequence_output 
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1.1.2: mkdir FASTQC_OUTPUT 
1.1.3: fastqc –o FASTQC_OUTPUT –extract –f fastq raw_data/6p_7kb_TSAC-
Adult1-g846_g847.1.raw.fastq.gz raw_data/6p_7kb_TSAC-Adult1-
g846_g847.2.raw.fastq.gz 
!
Here is how to view the results 
!
1.1.4: chrome FASTQC_OUTPUT/6p_7kb_TSAC-Adult1-
g846_g847.1.raw.fastq.gz/fastqc_report.html 
1.1.5: chrome FASTQC_OUTPUT/6p_7kb_TSAC-Adult1-
g846_g847.2.raw.fastq.gz/fastqc_report.html 
!
Useful information: 
(IUPAC code) http://www.bioinformatics.org/sms/iupac.html 
(Illumina HiSeq 2000 information) 
http://www.illumina.com/documents/products/datasheets/datasheet_hiseq2000.pdf 
(Illumina MiSeq information) 
http://www.illumina.com/documents/products/datasheets/datasheet_miseq.pdf 
(PacBio RS II information) http://www.pacificbiosciences.com/products/ 
(FastQC) http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 
!
 
 
Section 1: Genome 
Module 2: Sequence data files 
!
 
 
This module will be a review of the common formats used to store sequencing data. We’ll look 
at: fasta, fastq, sam & bam. You will also be introduced to the Picard & Fastx toolkits and shown 
how to convert between these formats. 
 
Fastq 
We’ve already discussed the fastq data format above. Just as a reminder, this is a four-line-per-
sequence-record, nucleotide-only data format that provides both base sequence as well as 
quality in a single file. Commonly this format will house paired-end data, with the read from each 
end of the DNA fragments housed in separate, paired fastq files. 
 
Fasta 
One of the most common sequence formats out there, fasta files, are simple text files with each 
sequence record represented by a header line, and then a variable number of lines containing 
the sequence data itself. The header lines must begin with the greater-than symbol (>), and 
after that the line is relatively free-form. Be aware that many programs will only recognize the 
first white-space delimited word on the header and use that as the identifier for that sequence. 
For this reason, you will often find the sequence IDs as the first string on these header lines. 
The sequence section of the fasta format is free-form. Sequence data is often listed using a 
fixed number of bases per line, but its completely valid to put an entire genome’s worth of 
sequence on a single line. Some older fasta files used to split the sequence lines with a blank 
every 10 characters to help make longer sequences more human-readable. You can’t make 
many assumptions about the specific format you will see inside a fasta file. The only safe 
assumption is that every sequence record will be separated by a header line: 
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>gi|5524378|gb|AAD44166.1| Cytochrome b [Elephas maximus maximus] 
ATGATGATGATGATGATGAAGACAAGGTGAGCCTAAGTAAAACTATCAAA 
CGACGTCAATCAATACTTCTGTGAGGTGCGTTACGTAATCAATCAAGCAA 
TAATATGATAGAGGTGGATCAAAACGATTTCAAATTGCGCTAACAAAGAG 
TTAATGCTTCTTCTTATCCT 
 
The fasta format is valid for both nucleotide and protein data. 
 
Sam (and Bam) 
The sam format (Sequence Alignment/Map) is an information rich data format for hosting 
nucleotide (-only) base and quality values. This format also supports the storage of alignment 
information, but can be used as a simple sequence data format as well. The sam format 
consists of 11 tab-delimited columns per sequence record (or several lines worth of 11 columns 
for sequence alignment data in which the same sequence maps to multiple things), as well as a 
number of header lines. For sequence only sam files (no alignments), there will usually be very 
few header lines, but for sam files hosting alignment information, there will be at least one 
header line per reference used in the mapping. These alignment sam files tend to have many of 
these header lines, so it may be useful view the sam file without the headers (I’ll show you how 
to do this in a bit). 
 
The columns in a sam file are setup to contain a lot of information: 
!

!
Much of this complexity is in place to support the storage of alignment information. If you are 
dealing with sam as a format solely for hosting sequence data, the important columns are the 
QNAME, SEQ and QUAL columns (columns 1, 10 and 11 respectively). !
 
The bam file format is often mentioned interchangeably with the sam file format. A bam file is 
simply the binary (compressed) version of a sam file. It is convenient to keep sam files in their 
compressed bam format to save space. In fact, many programs prefer bam as input over sam 
files. The samtools package provides a number of convenient tools for manipulating sam and 
bam files. 
 
Converting between formats 
Here is how to view the contents of a bam file (with headers): 
!
samtools view –h <bam> 
!
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Here is how to view it without headers: 
!
samtools view <bam> 
!
Here is how to convert a sam file into a bam file: 
!
samtools view –bSh –o <bam output> <sam input> 
!
Here is how to convert a bam file back into sam: 
!
samtools view –h <input bam> > <output sam> 
!
Next, we’ll practice some ways to convert between fastq, fasta and sam/bam using the Picard 
and Fastx bioinformatics toolsets. First, we’ll create a sorted bam file from a set of paired end 
fastq files using the Picard toolset 
!
1.2.1: cd 
~/WORKSHOP_RESOURCES/Section_1/module_2/Convert_between_formats 
1.2.2: java -jar ~/bin/picard.jar FastqToSam F1=raw_data/6p_7kb_TSAC-
Adult1-g846_g847.1.raw.fastq.gz F2=raw_data/6p_7kb_TSAC-Adult1-
g846_g847.2.raw.fastq.gz SAMPLE_NAME=6p_7kb_TSAC-Adult1-g846_g847 
SORT_ORDER=queryname OUTPUT=6p_7kb_TSAC-Adult1-
g846_g847.PE.name_sorted.bam 
 
Here we introduce the idea of the ‘sorted’ bam file. A sorted bam file is simply a bam file that 
has been sorted either by ‘name order’ or by ‘coordinate order’. Coordinate order sorting is 
meant for alignment bam files. It re-orders the sequence records within the bam file based on 
their alignment positions to each reference piece, with the references themselves being ordered 
alphabetically. Note that if you coordinate sort a bam file that is not aligned, it will work but the 
ordering will not be correct. Name ordering is the only valid ordering for alignment-free bam 
files, and it simply orders the sequences based on their names. 
Here is how to extract paired end fastq from a bam file: 
 
1.2.3: java -jar ~/bin/picard.jar SamToFastq INPUT=6p_7kb_TSAC-Adult1-
g846_g847.PE.name_sorted.bam F=6p_7kb_TSAC-Adult1-
g846_g847.end1.new_fastq F2=6p_7kb_TSAC-Adult1-
g846_g847.end2.new_fastq 
!
Here is how to extract fasta from fastq using the Fastx toolset: 
!
1.2.4: fastq_to_fasta –i 6p_7kb_TSAC-Adult1-g846_g847.end1.new_fastq –
o 6p_7kb_TSAC-Adult1-g846_g847.end1.new_fasta 
!
Useful information: 
(Bam/Sam specification) https://samtools.github.io/hts-specs/SAMv1.pdf 
(Picard Tools) http://broadinstitute.github.io/picard/command-line-overview.html#Overview 
(Fastx toolkit) http://hannonlab.cshl.edu/fastx_toolkit/ 
!
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Section 1: Genome 
Module 3: Analytical processing of sequences 
!
 
In this module, we’ll demonstrate typical steps involved in processing raw sequence data from 
the HiSeq 2000 platform to an analysis-ready state for assembly. This tutorial will be done on a 
subset of the T. suis data that will be used in the full assembly. In a real world usage case you’d 
most likely be running this process on multiple pairs of fastq files. 
!
Why data is not analysis-ready directly off the sequencing machine 
Raw sequence-data from a sequencing machine is technically capable of being used directly in 
most downstream analyses, but there are a number if factors that make that very ill advised. 
 
Sequencing adapters 
To prepare DNA material for sequencing, a sequencing library must be made. In our example 
case, we used the TruSeq genomic library preparation kit for the HiSeq 2000. The DNA sample 
is first fragmented into pieces roughly 200bp in length. Then TruSeq universal adapters and a 
specific version of the TruSeq index adapter are ligated onto each end of the fragments via a 
single base (A) overhang. 
!

The adapter–DNA fragment 
complex is then denatured and 
amplified to produce a final 
product containing the DNA 
insert, end-specific sequencing 
primers on either end, as well as 
a specific index for use in 
identifying this library out of a 
pool of libraries.!
 
These TruSeq sequence 
adapters are normally not visible 
in the final, sequenced product, 
because the sequencing primers 
are immediately adjacent to the 
DNA insert. However, if some 
fraction of the DNA inserts are 
shorter than the expected length, 
it is possible that sequencing 
can go all the way across the 
insert and read into the adapter 
sequence on the far end. Many 
of the analyses we typically want 
can be negatively affected by 
having adapter sequence left 
within the reads. It decreases 
mapping efficiency, confuses 

assemblies, etc. It is a good practice to identify and trim off any adapter sequence that may be 
present in your reads. 
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Low sequence quality 
During sequencing, each called base is typically assigned a quality score that refers to the 
likelihood that the base was correctly called by the sequencer. The common value used to 
represent these per-base confidences is the Phred score. 
 
Q = -10 * log10 P 
Q ! Phred score 
P ! probability of an error occurring 
Eg. Phred 20 implies that you are likely to see 1 error per 100 bases, Phred 30 implies 1 error 
per 1000 bases, Phred 40 implies 1 error per 10000 bases 
!
Poor quality sequence can interfere with downstream analysis as seriously as untrimmed 
adapters. It makes mapping less reliable, confuses assemblers, and is a major impediment to 
variant calling. As with adapter sequence, it is a good practice to trim off low quality sequence 
that may be present in your reads. 
 
Length filtering 
After trimming reads for adapter and low quality, its possible that some of the reads have been 
cut down to a very short size. We typically apply a length filter requiring that after the above 
trimming there be at least 60 bases of read left, otherwise we discard the sequence as a ‘short 
read’. Note that the 60bp threshold is the value we will use for the T. suis dataset. If your reads 
are shorter or longer, you may need to adjust that cutoff. 
 
Low sequence complexity 
These are regions that have an unusual composition that can create problems in sequence 
similarity searching (as well as other kinds of analyses). These regions contain low information 
content and can be ‘sticky’ during alignments. It is a good practice to filter your sequence data 
for low complexity regions before running downstream analysis. 
 
Contaminant filtering 
Finally, we filter our reads to remove contaminant. By contaminant, we mean any read whose 
source is not what we expect (in our case, our reads should originate from T. suis). Typical 
sources of contamination are: 
 
Host, bacteria, other (environmental contaminants). Also, for RNA-Seq work, it is often common 
to filter for 18/16s ribosomal data. This is because the amount of ribosomal sequence present 
can sometimes dwarf the amount of actual expressed transcript amongst your reads. So it is 
helpful for downstream analysis to get rid of it. 
 
For this demonstration, we’ll be screening for host contaminant only, in this case from pig. In 
general, you will want to pick and choose the contaminant db’s you’ll use based on the situation 
of each project. To save compute resources, we only want to screen for contaminants we 
expect might be a problem. 
 
Finally, be aware that contamination screening should be done after filtering out adapters, low 
quality and low complexity sequence. Those earlier issues, if left unfixed, can impede the 
identification of a read as contaminant. 
!
Discard both ends or only one? 
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One thing that must be considered when filtering and screening your data is whether to discard 
both ends of a paired end set, or only one. Because most sequence data generated is actually 
sequence from both ends of a single DNA insert, you need to think about whether a problem 
seen on one end should be considered to apply to both ends or not. In general, issues with 
adapter, sequencing error, and low complexity are not issues that necessarily affect both ends 
of a sequence insert. In those cases, we usually will just discard the problem end and retain the 
other. In the case of one end being identified as a contaminant, we normally will consider both 
ends contaminants and discard them both. 
!
Processing raw reads into an analysis-ready 
state 
Now we’re going to walk through typical steps 
we’d use to prepare our T. suis reads for 
assembly. To do this we need to accomplish 
these things: 
 

a) remove any adapters that may have 
been introduced during sequencing 
library preparation 

b) remove low quality, terminal regions 
c) apply a length filter to remove short 

reads after trimming 
d) remove reads of low sequence 

complexity 
e) remove reads that originate from host 

organism 
 
We’ll use the program Trimmomatic for 
adapter removal, quality trimming and length 
filtering. The filter_by_complexity script from 
the seq_crumbs package will remove reads of low sequence complexity, and we’ll use the 
Bowtie2 aligner to map the trimmed reads against a host database. Between these steps some 
file manipulation is required to get the sequences into the format needed for the next step. This 
data shuffling will be done using parts of the samtools & KHMER packages, as well as some old 
fashioned command line unix. 
 
The analysis-ready output 
This processing will result in a set of paired end fastq, and an extra fastq of orphaned reads 
whose mates were discarded (due to filtering steps that removed only a single end from a pair). 
This process can be messy on a technical level due to the need to convert data between the 
bam & fastq formats, and the need to keep the paired-end data synchronized and free of 
orphans. In practice, we would normally assemble all these steps into a single pipeline script. 
For the purposes of this demonstration, we’ll walk through each step manually. 
 
Be aware that there are alternatives to the software we’re showing for most of these steps. The 
programs we’re using are generally robust, but you may want to experiment with other options 
for your data. No tool does a perfect job, and you may be able to find tools that perform better or 
more efficiently for your specific dataset.  
 
Finally, it’s often reasonable to simply work only with paired end data, and discard the small 
fraction of orphaned reads generated at each step. This simplifies the process at the expense of 
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a small fraction of your reads. This is actually a fairly common practice, especially if you find 
yourself doing an extra hour of coding work to preserve a few thousand reads out of 200 million 
reads. 
!
Processing the data 
Here are the steps involved in running Trimmomatic and preparing the output for the next step. 
This step trims off adapter, quality trims and filters the trimmed reads based on length. 
!
1.3.1: cd 
~/WORKSHOP_RESOURCES/Section_1/module_3/Processing_genomic_data_to_cle
aned_state 
1.3.2: java -jar ~/bin/trimmomatic-0.33.jar PE -threads 8 -phred33 -
trimlog TRIMLOG.txt raw_data/6p_7kb_TSAC-Adult1-
g846_g847.1.raw.fastq.gz raw_data/6p_7kb_TSAC-Adult1-
g846_g847.2.raw.fastq.gz 6p_7kb_TSAC-Adult1-g846_g847.PE_end1.fastq 
6p_7kb_TSAC-Adult1-g846_g847.ORPHANS_end1.fastq 6p_7kb_TSAC-Adult1-
g846_g847.PE_end2.fastq 6p_7kb_TSAC-Adult1-
g846_g847.ORPHANS_end2.fastq 
ILLUMINACLIP:databases/TruSeq_adapters.fna:2:30:10 SLIDINGWINDOW:5:20 
LEADING:20 TRAILING:20 MINLEN:60 
1.3.3: cat 6p_7kb_TSAC-Adult1-g846_g847.ORPHANS_end1.fastq 
6p_7kb_TSAC-Adult1-g846_g847.ORPHANS_end2.fastq > 
Tsuis_genomic_7kb_insert.trimmomatic_ALL_ORPHANS.fastq 
1.3.4: java -jar ~/bin/picard.jar FastqToSam F1=6p_7kb_TSAC-Adult1-
g846_g847.PE_end1.fastq F2=6p_7kb_TSAC-Adult1-g846_g847.PE_end2.fastq 
SAMPLE_NAME=Tsuis_genomic_7kb_insert SORT_ORDER=coordinate 
OUTPUT=Tsuis_genomic_7kb_insert.trimmomatic_PE_coord_sorted.bam 
1.3.5: java -jar ~/bin/picard.jar SamToFastq 
INPUT=Tsuis_genomic_7kb_insert.trimmomatic_PE_coord_sorted.bam 
INTERLEAVE=true 
FASTQ=Tsuis_genomic_7kb_insert.trimmomatic_PE_interleaved.fastq 
 
Next we filter out low complexity data using filter_by_complexity from the seq_crumbs package, 
and then prepare the output for the final Bowtie2 mapping step 
!
1.3.6: filter_by_complexity -o 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.brokenPE_interleav
ed.fastq --paired_reads --fail_drags_pair False 
Tsuis_genomic_7kb_insert.trimmomatic_PE_interleaved.fastq 
1.3.7: filter_by_complexity -o 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.ORPHANS.fastq 
Tsuis_genomic_7kb_insert.trimmomatic_ALL_ORPHANS.fastq 
1.3.8: source /home/ec2-user/bin/KHMER/khmerEnv/bin/activate 
1.3.9: extract-paired-reads.py -f 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.brokenPE_interleav
ed.fastq 
1.3.10: deactivate 
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1.3.11: cat 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.ORPHANS.fastq 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.brokenPE_interleav
ed.fastq.se > 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.ALL_ORPHANS.fastq 
1.3.12: paste - - - - - - - - < 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.brokenPE_interleav
ed.fastq.pe | tee >(cut -f 1-4 | tr "\t" "\n" > 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.PE_end1.fastq) | 
cut -f 5-8 | tr "\t" "\n" > 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.PE_end2.fastq 
 
Finally, we will map the cleaned reads against a host database, pig in this case, and remove all 
reads and read pairs that have either end detected as a contaminant. We’ll use Bowtie2 for this 
mapping, and we’ll prepare the final, cleaned & contaminant free data for assembly 
!
1.3.13: bowtie2-build Sus_scrofa.Sscrofa10.2.dna_rm.toplevel.fa 
Sus_scrofa.Sscrofa10.2.dna_rm.toplevel 
1.3.14: bowtie2 -q -x databases/Sus_scrofa.Sscrofa10.2.dna_rm.toplevel 
-1 Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.PE_end1.fastq -
2 Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.PE_end2.fastq -S 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
sam 
1.3.15: bowtie2 -q -x databases/Sus_scrofa.Sscrofa10.2.dna_rm.toplevel 
-U 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.ALL_ORPHANS.fastq 
-S 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.sam 
 
1.3.16: samtools view -bSh -o 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.bam 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.sam 
1.3.17: samtools sort 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.bam 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.sorted 
1.3.18: bamtools filter -in 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.ORP
HANS.sorted.bam -out 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.ORPHANS.
bam -isMapped false 
1.3.19: java -jar ~/bin/picard.jar SamToFastq 
INPUT=Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.OR
PHANS.bam 
FASTQ=Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.OR
PHANS.fastq 
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1.3.20: samtools view -bSh -o 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
bam 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
sam 
1.3.21: samtools sort 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
bam 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
sorted 
1.3.22: bamtools filter -in 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.mapped_to_host.PE.
sorted.bam -out 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.PE.bam -
isMapped false -isMateMapped false 
1.3.23: java -jar ~/bin/picard.jar SamToFastq 
INPUT=Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.PE
.bam 
FASTQ=Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.PE
_end1.fastq 
SECOND_END_FASTQ=Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.h
ost_free.PE_end2.fastq 
 
Evaluating our analysis-ready data 
Now that we’ve processed our data to an analysis-ready state, lets run FastQC again on the 
final output and compare it back to the FastQC results from the original, raw data 
!
1.3.24: cd /home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_3/Processing_genomic_data_to_
cleaned_state 
1.3.25: mkdir FASTQC_OUTPUT 
1.3.26: fastqc –o FASTQC_OUTPUT –extract –f 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.PE_end1.
fastq 
Tsuis_genomic_7kb_insert.trimmomatic_and_complexity.host_free.PE_end2.
fastq  
!
We’ll then use the chrome browser (as before) to compare the final paired fastq files to the 
original, raw paired fastq files. 
!
Useful information: 
(Trimmomatic) http://www.usadellab.org/cms/?page=trimmomatic 
(Bowtie2) http://bowtie-bio.sourceforge.net/bowtie2/index.shtml 
(seq_crumbs) https://bioinf.comav.upv.es/seq_crumbs/available_crumbs.html 
(bamtools) https://github.com/pezmaster31/bamtools!
!
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Section 1: Genome 
Module 4: Genome assembly 
 
 
There are a lot of choices when deciding on a genome assembler. Considerations include the 
predicted genome size, the technology type, and the cost (computational, and paying for the 
assembler). Today’s demonstration will be using ALLPATHS-LG, which is a de Bruijn Graph 
assembler for large genomes.  ALLPATHS-LG requires paired end reads from at least one 
fragment and one jumping library sequenced on the Illumina platform. The use of multiple 
libraries enables ALLPATHS-LG to build a higher quality assembly. When using ALLPATHS_LG, 
our recommended sequence coverage requirements are: 45x fragments, 45x 3-8kb and 10x-
20x lrg insert ie. 5kb+. In our assembly, we will be using 11,898,407 fragment read pairs, 
4,960,173 3kb read pairs and 2,975,142 7kb read pairs 
 
ALLPATHS-LG requires a specific format for input sequence data files in order to run the 
assembler. PrepareAllPathsInputs.pl, an ALLPaths script, will be run after we begin by setting 
up two dependency files: 
 
Dependency File #1: in_groups.csv  
 
100,Illumina_011,/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data/13p_fra
gment.*.trimPaired.fastq.gz  
200,Illumina_012,/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data/33p_3-
5kb_.*.trimPaired.fastq.gz  
300,Illumina_013,/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data/6p_7kb.
*.trimPaired.fastq.gz 
 
Notes: This file does not require a header with each field type.   
Group name: unique name for data set (free form) 
Library name: library name for data set (free form but good practice to use some identifying 
nomenclature) 
File name: absolute path to data file. Wildcard characters * and ? are accepted in the name of 
the file but NOT the file extension. 
Supported extensions are .bam, .fasta, .fa, .fq, .fastq.gz, and fq.gz (all case specific). Also, if 
you use .fasta or .fa, the script expects a corresponding .quala or .qa file to exist for each 
respective file. 
 
Dependency File #2: in_libs.csv  
 
library_name,project_name,organism_name,type,paired,frag_size,frag_std
dev,insert_size,insert_stddev,read_orientation,genomic_start,genomic_e
nd  
Illumina_011,Awesome,T.suis,fragment,1,205,10,,,inward,,  
Illumina_012,Awesome,T.suis,jumping,1,,,7475,500,outward,,  
Illumina_013,Awesome,T.suis,jumping,1,,,2833,500,outward,, 
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Notes: Every field is required in this file. A header is used, and each field must be represented 
in the data entered (a comma separated field can be left blank; see example above). 
Library_name: must match same field in in_group.csv 
Project_name: free form name 
Organism_name: organism 
Type: informative field only ie fragment, jumping EcoP15, etc. 
Paired: 0 = unpaired reads; 1: paired reads 
Frag_size: average # of bases in the fragment library 
Frag_stddev: estimated standard deviation of the fragment sizes 
Insert_size: average # of bases in the jumping library inserts (if larger than 20kb the library is 
considered Long Jumping) 
Insert_stddev: estimated standard deviation of the insert sizes 
Read_orientation: inward or outward 
Genomic_start: index of the FIRST genomic base in the reads.  If not zero, then all bases before 
the genomic start will be trimmed off 
Genomic_end: index of the LAST genomic base in the reads.  If not zero, then all bases after 
the genomic end will be trimmed off 
 
With these two files prepared, you can now run: 
 
1.4.1: PrepareAllPathsInputs.pl DATA_DIR=/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data 
PLOIDY=2 
 
Other optional settings include: 
 
PICARD_TOOLS_DIR (use version 1.101) if you are using .bam files in the .csv files made 
above. 
INCLUDE_NON_PF_READS=1 allows you to use the orphan reads kept in the previous module.   
GENOME_SIZE, FRAG_COVEAGE, JUMP_COVERAGE, and LONG_JUMP_COVERAGE 
used together you can set the desired coverage percentage based on the estimated size set for 
GENOME_SIZE 
 
Now we can start the assembly: 
 
1.4.2: RunAllPathsLG PRE=/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4 REFERENCE_NAME=Tsuis 
DATA_SUBDIR=all_path_data RUN=myrun SUBDIR=attempt1 
 
Notes: All of the ALLPATHS arguments are to set the pipeline directory names.  If your 
ALLPATHS run fails at any point, you can troubleshoot the issue and then restart ALLPATHS 
and it will restart on the stage that failed (as long as you don’t delete any of the directories/data 
that was produced up to that point).  
Use the following command which adds “OVERWRITE=True”: 
 
1.4.3: RunAllPathsLG PRE=/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4 REFERENCE_NAME=Tsuis 
DATA_SUBDIR=all_path_data RUN=myrun SUBDIR=attempt1 OVERWRITE=True 
 
This assembly took 5.3 hours. When the assembly finishes it will be found at the following 
location: 
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/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data/myrun/ASSEMBLY/
attempt1/final.assembly.fasta 
 
Useful information: 
ftp://ftp.broadinstitute.org/pub/crd/ALLPATHS/Release-LG/AllPaths-LG_Manual.pdf 
 
Quality Assessment 
Assembly improvement and QC of de novo assemblies go hand in hand since high-quality draft 
genomes lead to more successful and accurate annotation. We use a combination of CEGMA, 
N50, and RNA mapping to assess the quality of an assembly. 
 
CEGMA (Core Eukaryotic Genes Mapping Approach) uses a defined set of 458 single-copy, 
conserved eukaryotic genes, and searches for orthologs of these proteins in the de novo 
genome assembly. Since these proteins are conserved across eukaryotes ranging from yeast to 
plants to humans, the completeness of this protein set in a draft genome is a useful indicator of 
the genome quality. CEGMA produces a completeness report, but we prefer to parse the 
cegma.gff file against the core proteins to get a count of the CEGs (Core Eukaryotic Genes) and 
lcCEGs found in the assembly.  
!
1.4.4: cegma --genome final.assembly.fasta -threads 8 & 
 

N50 is a basic statistic for 
describing how contiguous an 
assembly is.  The longer the 
N50 is, the better the assembly. 
 
RNA mapping looks at the 
percent of gene contained within 
the assembly 
 
Assembly Improvement 
After assessing an assembly, 
we can take advantage of 
numerous assembly 
improvement tools. Two open 
source options that we use are 
GapFiller and PBJelly. PBJelly 
(part of PBSuites) is able to fill 
gaps and merge scaffolds 
utilizing long reads (which is 
particularly useful for PacBio 
data). For this project, we do not 
have any available PacBio data, 
so we will be utilizing GapFiller 
instead. The image below 
illustrates how GapFiller fills the 
contig gaps: 
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We will start by creating the libraries.txt file: 
 
Libraries File: libraries.txt 
lib100 bowtie 
/gscmnt/gc2546/mitrevalab/research/t_suis_class/25p_fragment_lib_TSAC-
Adult1-g846_g847.1.raw.fastq 
/gscmnt/gc2546/mitrevalab/research/t_suis_class/25p_fragment_lib_TSAC-
Adult1-g846_g847.2.raw.fastq 205 0.3 FR 
lib200 bowtie /gscmnt/gc2546/mitrevalab/research/t_suis_class/65p_3-
5kb_TSAC-Adult1-g846_g847.1.raw.fastq 
/gscmnt/gc2546/mitrevalab/research/t_suis_class/65p_3-5kb_TSAC-Adult1-
g846_g847.2.raw.fastq 7475 0.5 RF  
lib300 bowtie 
/gscmnt/gc2546/mitrevalab/research/t_suis_class/12p_7kb_TSAC-Adult1-
g846_g847.1.raw.fastq 
/gscmnt/gc2546/mitrevalab/research/t_suis_class/12p_7kb_TSAC-Adult1-
g846_g847.2.raw.fastq 2833 0.5 RF 
 
Notes:   
Library Name: free form 
Mapper: bowtie or bwa 
Path to both mate pairs files 
Insert size  
Error 
Read orientation 
 
We then run GapFiller using: 
 
1.4.5: GapFiller.pl -l libraries.txt -s final.assembly.fasta -T 8 -b 
Tsuis -i 5  
 
Notes: –l is the file made above; –s assembly file; –T threads; –b directory and root file name; –i 
iterations. Runtime varies based on number of gaps and amount of data used 
 
Useful links: 
http://korflab.ucdavis.edu/datasets/cegma/README 
 
 
 
Section 1: Genome 
Module 5: Genome annotation 
 
 
“A beginner’s guide to eukaryotic genome annotation” 
http://www.nature.com/nrg/journal/v13/n5/full/nrg3174.html is a great resource. The first step 
when annotating a genome is to identify repeat sequences, because they can interfere with 
gene predictors and evidence alignment. 
 
Masking repeats 
Tandem Repeat Finder (TRF): Start by using TRF to mask short interspersed tandem repeats: 
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1.5.1: trf Tsuis.gapfilled.final.fa2 7 7 80 10 50 500 -d -m -h  >> 
TRF.stdout 
 
Now we need to create a blast database for RepeatModeler: 
 
1.5.2: makeblastdb -in final.assembly.fasta.2.7.7.80.10.50.500.mask -
dbtype nucl 
 
Running RepeatModeler (run time is 24-36 hours): 
 
RepeatModeler -database Tsuis.gapfilled.final.fa.masked.fasta >> 
RM_stdout 
 
Repeatmodeler will create an RM_[PID].[DATE]/ directory,  
(e.g. RM_10825.ThuAug271528572015/) 
 
Once RepeatModeler has completed, you will need to QC the output to check for repeats that 
are really genes (gene families) or RNA features. 
 
The following are the screening steps for QC: 
 
Blastx vs nr for protein coding genes: 
 
1.5.3: blastx nr consensi.fa.classified E=10e-5 -o 
consensi.fa.classified.nrcheck.blast.out 
 
Blastn vs RNA database for ribosomal or other RNA genes (Rfam.fasta comes with the Rfam 
download): 
 
1.5.4: blastn Rfam.fasta consensi.fa.classified 10e-5 -o 
$1.rnacheck.blast.out 
 
Retrotransposon check: 
 
1.5.5: blastx transposonDb consensi.fa.classified E=10e-5 -o 
$1.retrocheck.blast.out 
 
The final file output from RM is consensi.fa.classified file in the RM directory 
(e.g. .M_10825.ThuAug271528572015/consensi.fa.classified). We then screen the blast.out 
files with tools that look at P >=0.01 identity/coverage (50% PID/20% Identity) and naming that 
is known to be acceptable and database types that lead us to believe the protein has been 
checked: 
  
"unknown", "hypothetical", "oxidase", "histone", "kinase", "protease", "reductase", "RNA", 
"synthase", "ATPase", "phosphatase", "cytochrome", "ribosomal", "titin", "extensin", "abductin", 
"tRNA", "drosophila", "nucleosome", "transferase", "unnamed", "polyprotein", "putative", 
"peptide", "resolvase", "alpha", "beta", "fusion", "lactamase", "galact", "integrase", "ref", "emb", 
"dbj", "gb", "pir", "prf", "sp", "pdb", "intron","synthetase" 
 
1.5.6: mkdir RepeatMasker  
1.5.7: cd RepeatMasker  
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1.5.8: RepeatMasker -lib repeats.lib 
trf.masked.fasta  >>RepeatMasker.stdout  
 
Note: The input sequence can be split into chunks to expedite.  
 
 
RepeatMasker outputs the following files: 
D918.newname.fsa.masked - Masked fasta  
D918.newname.fsa.tbl - Summary table gives total %masked and breakdown of types 
D918.newname.fsa.log  - run output 
Other output files with details of repeats/positions etc. 
D918.newname.fsa.cat D918.newname.fsa.out D918.newname.fsa.ref 
 
Useful links: 
https://tandem.bu.edu/trf/trf.html 
http://www.repeatmasker.org/RepeatModeler.html 
http://www.repeatmasker.org/webrepeatmaskerhelp.html 
 
We also annotate non-coding RNAs using the Rfam and tRNA scan. We mask these predictions 
before running the predictor programs, in order to further simplify the regions the predictors 
have to look at. 
 
Rfam - http://nar.oxfordjournals.org/content/43/D1/D130 
 
1.5.9: rfam_scan -f tab -o Rfam.out File.fasta  
 
-f specifies format  
-o specifies output location  
The last argument is just the sequence file to use  
 
Notes: For rfam scan, we modified the script so that it skips the rare group II introns, because if 
greatly reduces the run time. 
 
We can scan a sequence file for tRNAs using tRNAscan, EufindtRNA & tRNA covariance.  
 
tRNAscan - http://lowelab.ucsc.edu/tRNAscan-SE/Manual 
 
1.5.10: tRNAscan-SE -o tRNAscan.output File.fsa  
 
Annotation 
Producing gene predictions to produce a high quality final set of gene annotations. 
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A beginner's guide to eukaryotic genome annotation. M Yandell & D Ence  Nature Reviews Genetics 13, 329-342 (May 2012). 
 
 
We will perform annotation using Maker (M. Yandell et. al., 2007)  
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2134774/pdf/188.pdf 
 
First, we generate config files for Maker:  
 
1.5.11: maker -CTL  
 
This creates 3 default config files: 
 
maker_bopts.ctl : blast type and cut-off  
maker_exe.ctl : program paths  
maker_opts.ctl : all other parameters  
 
The -CTL option will give you default parameters. You will need to set up paths in each file to 
match the system you are on (paths to blast databases, etc). For our maker runs, we only need 
to do the -CTL once, and then we copy the ctl files to the new directories so we don't have to 
update paths for blast exe's etc. We only need to change the maker_opts.ctl file for blast db's. 
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Change any parameters and/or paths which are different from the working copy, including: 
 
path to sequence file  
protein database path  
EST database path  
alt-est database path if needed  
ab initio predictors being run  
ab initio corresponding model files  
model_gff and/or pred_gff or other _gff files  
evidence predictors 
 
Open maker_opts.ctl and add path to these lines 
 
Find this line: 
#-----EST Evidence (for best results provide a file for at least one): 
 
1.5.12: est= #set of ESTs or assembled mRNA-seq in fasta format 
 
Beneath this EST Evidence section, also change: 
#-----Protein Homology Evidence (for best results provide a file for at least one) 
 
1.5.13: protein=  #protein sequence file in fasta format (i.e. from 
mutiple oransisms) 
 
To run any of the predictors: Snap, Fgenesh, Augustus you need to train them.  Fgenesh is a 
commercial predictor that you would need to purchased, but snap is free and maker also works 
with GeneMark and others, but those are the most common. We are not going to go perform 
overpredictor training today. 
 
 
To run maker:  
 
1.5.14: maker --RM_off -g File.fasta maker_bopts.ctl maker_exe.ctl 
maker_opts.ctl  
 
 
Here is some information on the directory structure and the files that maker outputs: 
 
Path/Maker  
 
maker_bopt.ctl  
maker_ext.ctl  
maker_opts.ctl  
 
GENOME.maker.output/ - contains all output for a given run of MAKER  
 
maker_bopts.log  : These are logs of the control files used for this run of MAKER  
maker_opts.log  
maker_exe.log  
 
seen.dbm  
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sequnce_maker_length_99.db  
sequnce_maker_length_99_master_datastore_index.log  - log of MAKER run progress as well 
as an index for traversing through the output  
 
mpi_blastdb/ - Contains fasta indexes and error corrected fasta files built from the EST and 
protein database provided by the user.  
 
*.mpi.10/   - contains indexed database files  
nematode_protein_new.mpi.10/   - contains indexed database  files  
 
<Sequence_name>._datastore/  - contains subdirectories that hold the output for each 
individual contig of the input fasta file. See DATASTORE DIRECTORY STRUCTURE section in 
README for more information  
 
08/ 25/Contig#/ - first two directories; numbers/letters vary  
 
run.log  
<Sequence_name>.gff - a gff file that can be loaded into GMOD, GBROWSE, or Apollo  
<Sequence_name>.maker.snap.proteins.fasta - a fasta file of ab-inito predicted protein 
sequences from program  
 
<Sequence_name>.maker.snap.transcripts.fasta - a fasta file of ab-inito  
predicted transcript sequences from program  
 
<Sequence_name>.maker.transcripts.fasta - a fasta file of the MAKER annotated transcript 
sequences  
 
<Sequence_name>.maker.proteins.fasta - a fasta file of the MAKER  
annotated protein sequences  
 
<Sequence_name>.maker.non_overlapping_ab_initio.proteins.fasta - a  
fasta file of filtered ab-inito protein sequences that don't overlap maker annotations  
 
<Sequence_name>.maker.non_overlapping_ab_initio.transcripts.fasta  - a fasta file of filtered 
ab-inito transcript sequences that don't overlap maker annotations  
 
theVoid.Contig#/  - a directory containing all of the raw output files produced by MAKER, 
including BLAST reports, SNAP output, exonnerate output and the masked genomic sequence.  
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Explaining GFF3 files 
 
http://www.broadinstitute.org/annotation/argo/help/gff3.html 

Field Descriptions (Note: Except for the last field [9], all gff flavors are the same): 

1. seqname - The name of the sequence. Typically a chromosome or a contig. Argo does 
not care what you put here. It will superimpose gff features on any sequence you like. 

2. source - The program that generated this feature. Argo displays the value of this field in 
the inspector but does not do anything special with it. 

3. feature - The name of this type of feature. The official GFF3 spec states that this should 
be a term from the SOFA ontology, but Argo does not do anything with this value except 
display it. 

4. start - The starting position of the feature in the sequence. The first base is numbered 1. 
5. end - The ending position of the feature (inclusive). 
6. score - A score between 0 and 1000. If there is no score value, enter ".". 
7. strand - Valid entries include '+', '-', or '.' (for don't know/don't care). 
8. frame - If the feature is a coding exon, frame should be a number between 0-2 that 

represents the reading frame of the first base. If the feature is not a coding exon, the 
value should be '.'. Argo does not do anything with this field except display its value. 

9. GFF3: grouping attributes Attribute keys and values are separated by '=' signs. Values 
must be URI encoded.quoted. Attribute pairs are separated by semicolons. Certain, 
special attributes are used for grouping and identification (See below). This field is the 
one important difference between GFF flavors. 

Special Field 9 Attributes: 

The first special thing about field 9 attributes is that they can be associated with transcripts. 
Previous flavors of GFF restricted attributes to the lowest level subfeature (exons). 

Any key=value attribute pair will be displayed by argo, but the following have special meaning: 

1. ID - unique identifier for this feature. 
2. Parent - identifier of parent feature. 
3. Name - used as the feature label in the feature map. 

 
 
Section 1: Genome 
Module 6: Functional annotation 
 
 
                        
This module will review two standard methods for assigning functional annotations to a de novo 
geneset.  We’ll run a protein vs. protein alignment using the NCBI’s BLASTP+, and we’ll discuss 
the interproscan program and take a look at typical interproscan output and how to make use of 
it. 
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Using NCBI’s BLASTP+ to assign functional annotation 
 
One common method of assigning a function to a set of de novo gene calls is simply by 
mapping them to an already annotated set of genes from closely related organisms.  We’ll go 
over the details of actually running a blastp in a bit, but first we’ll review how to locate and 
prepare a database for this mapping. 
 
If you happen to have a highly conserved organism’s gene set handy that happens to already 
be well annotated, you may not need to do anymore digging.  For example, if you are working 
with a non-parasitic nematode, you can’t do much better than to simply use the highly curated 
and well annotated C.elegans gene set for this mapping.  Bu t if you are working with an 
organism not in that happy circumstance (as most of us are, all the time), the next best thing is 
to walk the lineage of your species using GenBank’s Entrez Records which are avaible when 
using a taxonomy search.  Lets do this now: 
 
1. Open a browser on your laptop 
2. Go to the NCBI website at http://www.ncbi.nlm.nih.gov 
3. Enter “Trichuris suis” in the search box at the top of the screen, and set the search menu 

to “Taxonomy”, then click “Search” 
4. Click through the “Trichuris suis” link 
5. Notice the “Entrez records” table on the right side of the screen.  What we want is to find 

a level of taxonomy above our species for which GenBank has a good number of 
“Protein” available 

6. Click on the genus level link in the lineage (Trichuris) 
7. Click the “Trichuris” link at the top of the list of species to get back to the “Entrez records” 

table at that level in the taxonomy 
8. Notice that GenBank has 48,510 proteins available for this taxa, click on the “48.510” 

number which is a link that will prepare an output set of those proteins 
9. Now we will download this protein set.  Open the “Send to:” menu in the upper right 

corner of the page 
10. Choose Destination “File” 
11. Set the Format to “Fasta” 
12. Click on “Create File” to download the file 
 
For the purposes of  this workshop I’ve already prepared a somewhat smaller db for use in our 
demonstration, which is already available in the EC2 instance (i.e. you don’t really need to 
download the above).  But the above process is very useful for when you don’t have a specific 
protein db in mind, yet you want to assign blastp annotations to your gene set basic on 
homology to related organisms. 
 
Running NCBI’s BLASTP+ 
 
Now we’re going to actually map our gene set to our protein database and filter based on 
alignment strength.  First we need to prepare the blast database for use. 
 
1.6.1: cd /home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_6/NCBI_Blast+/database 
1.6.2: makeblastdb -in Ttrichuira_geneset.fna -dbtype prot 
 
Next we can start the blastp alignment 
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1.6.3: cd /home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_6/NCBI_Blast+ 
1.6.4: blastp -db database/Ttrichuira_geneset.fna -query 
Tsuis.protein.faa -num_threads 8 -outfmt 6 -max_target_seqs 1  -out 
Tsuis_vs_Ttrichiura.raw_blastp.tsv 
 
Then we would typically parse the results using some alignment scoring threshold to filter out 
only the solid hits 
 
1.6.5: awk '{if ($11<1e-05) print $0;}' < 
Tsuis_vs_Ttrichiura.raw_blastp.tsv > 
Tsuis_vs_Ttrichiura.raw_blastp.tsv.hits_at_1e-05 
The output format we selected using the –outfmt 6 argument produces results in this tab-
delimited format: 
 
Query id 
Subject id 
Percent identity 
Alignment length 
Mismatch count 
Gap open count 
Start of alignment in query 
End of alignment in query 
Start of alignment in subject 
End of alignment in subject 
E-value 
Bitscore 
 
The results at this point will provide associations between our de novo gene set and the genes 
from our database.  We would then use a lookup script to go back and extract the full line 
annotations from our database and add them to our new genes.  While we won’t cover that in 
this workshop, we’d be happy to provide scripts for this on request after the class. 
 
Interproscan 
 
Interproscan is a program that searches a collection of databases and reports associations to all 
these databases for each gene searched.  For our purposes we are mainly interested in the IPR 
and GO annotations provided by this software.   But here is a full listing of what is searched: 
 
PANTHER, PFAM, PIRSF, PRINTS, PRODOM, PROSITE, PROFILE, SMART, TIGRFAMs, 
GENE3D, SSF, SWISSPROT, TREMBL, INTERPRO, GO, MEROPS, UniProt, HAMAP, PFAMB 
 
Due to its resource intensive nature, and the size of the databases needed in its execution we 
are not able to demonstrate this software live in our workshop.  So we’ve short-cut this section 
and deposited pre-built interproscan output for the T.suis gene set in the EC2 instance.  First 
lets take a look at the raw output 
 
1.6.6: cd /home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_6/Interproscan 
1.6.7: more trichuris_suis_interpro_results 
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That command will scroll through that file one page at a time.  The length of each line will cause 
the output to wrap on your screen, making it look messy.  But the output of interproscan is 
actually organized into tab-delimited columns: 
 
1. Protein Accession 
2. Sequence MD5 digest 
3. Sequence Length 
4. Analysis (i.e. the db that was searched on this line) 
5. Signature Accession 
6. Signature Description 
7. Start location 
8. Stop location 
9. Score (i.e. usually the e-value of the match reported by member database method, 

although sometimes a specific search engine will report a non- e-value based score) 
10. Status 
11. Date 
12. InterPro annotations – accession (optional column) 
13. InterPro annotations – description (optional column) 
14. GO annotations (optional column) 
15. Pathways annotation (optional column) 
 
 
 
Parsing Interproscan results for downstream use 
 
In order to prepare these annotations for downstream analysis (primarily the building of the 
gene summary table, and the expression analysis that will be shown in Section 2) we need to 
parse our raw interproscan output into a pre-arranged format that we typically use for that later 
work.  This requires the use of a locally generated perl script (that we’re happy to share on 
request), and would normally build files for both GO and IPR annotations.  As a demonstration 
we’ll show how we use this script to generate the GO index 
 
1.6.8: scripts/prepare_files_for_FUNC.no_parents.pl -iprscan_file trichuris_suis_interpro_results 
-GO_description GO.terms_and_ids.obo.120531 -gene_fof tsuis_full_gene_list.txt -output 
Tsuis.GO_annotatioN_index 
 
If you ‘more’ the output file, you’ll see that this is a much simpler format than trying to work with 
the native interproscan result file.  This parsed annotation file will be used in Section 2 to help 
populate the gene summary table in Excel.  This format (3 simple columns) should be easy to 
work with within the spreadsheet. 
 
Useful information: 
(NCBI BLAST+ UNIX tutorial) https://molevol.mbl.edu/wiki/index.php/BLAST_UNIX_Tutorial 
(NCBI BLAST+ command line arguments) http://www.ncbi.nlm.nih.gov/books/NBK279675/ 
(Interproscan) https://github.com/ebi-pf-team/interproscan/wiki 
(Interpro Db) https://www.ebi.ac.uk/interpro/about.html 
(Gene Ontology) http://geneontology.org 
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Section 2: Transcriptome 
Module 0: RNA isolation to sequence production 

1)  Experimental design 
2)  Library construction & sequencing 

Experimental design 

Resource:  https://genome.ucsc.edu/ENCODE/protocols/dataStandards/ENCODE_RNAseq_Standards_V1.0.pdf, 
http://gkno2.tumblr.com/post/24629975632/thinking-about-rna-seq-experimental-design-for  

•  What’s the purpose? 
•  Gene discovery 
•  Differential expression 

•  More reads = more confidence 
•  Depth  

•  Depends on genome size, coding features, etc. 
•  More for discovery of novel features, low expression genes 

•  Replicates 
•  Biological, not technical 
•  More is better for differential expression, 3 per condition 

•  Collect appropriate meta-data when you collect your RNA 
•  Strain/isolate/batch 
•  Sex, age, patency 
•  Treatments  
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Quality control of RNA sample 
•  Nanodrop quantitation 

•  Standard equipment 
•  Peaks at particular 

absorbance range can 
signal contamination  

•  Can’t distinguish between 
DNA, RNA, free 
nucleotides 

•  Qubit fluorometric quantitation 
•  Use separate kits to 

measure RNA, DNA and 
protein individually 

•  Agilent bioanalyzer to assess 
integrity 
•  RNA integrity number 

(RIN) 
 

Production of Illumina RNAseq data 

•  Assess quality & concentration 
•  DNAse treatment 
•  Poly(A) selection 
•  Fragmentation 
•  cDNA synthesis 

•  oligo(dT) & random 
hexamers 

•  Library preparation 
•  Sequencing 

AAAAAA 

AAAAAA 
TTTTTT 

TTTTTT 
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RNA-seq analysis overview 

RNA sequencing and 
read cleaning 

RNA-Seq dataset(s) No genome  
available 

de novo transcriptome 
assembly 

Map RNA-Seq reads 
to genome 

Genome  
available 

Map RNA-Seq reads to 
transcriptome 

Isoform  
reconstruction 

Table of read counts 
per transcript or gene 

model 

Table of read counts 
per gene 

Map RNA-Seq 
reads to isoforms 

Table of read 
counts per isoform 

or exon 

Downstream analysis (differential gene expression,  
clustering, PCA, functional enrichment, etc). 

Read pre-processing and filtering: a very stringent protocol 

1)  Adapter removal 
2)  Quality trimming & filtering 
3)  Contaminant filtering 
 
Resource:  http://www.nature.com/nprot/journal/v8/n8/pdf/nprot.2013.084.pdf, specifically Box 1 
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Our “test” dataset 

•  Larval  
•  10 days post 

inoculation (dpi), 
L2 

•  16 dpi, L3 
•  17 dpi, L3 
•  21 dpi, L4 

•  Adult 
•  42 dpi, L5 
•  Adult rep1 
•  Adult rep2 

Life cycle of Trichuris suis 

Our “test” dataset 

Resource:  http://www.htslib.org/doc/samtools.html 

•  Counting reads in a bam file 
samtools view –b –c input.bam 
•  Divide by 2 to get pairs! 

•  Downsampling: 
samtools view –b –s XX.XX –o output.bam input.bam 

•  -b: input is bam format 
•  -s:  random down-sampling, integer before the decimal is seed for 

random number generator, after the decimal is the % reads to maintain 
•  -o:  output file name 

•  Convert bam ! fastq as before  

L2_10d L3_16d L3_17d L4_21d L5_42d L5_r163 L5_r179 Total 

Total raw pairs 43,592,929 54,459,409 47,371,505 58,231,629 55,800,467 32,809,672 41,902,924 334,168,535 

Downsampled 
raw pairs 4,435,622 5,511,063 4,817,349 5,891,002 5,644,329 3,337,590 4,258,806 33,895,761 

300-500bp fragment 

Read 1  ! "  Read 2 
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Adapter detection 

Resource:  http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 

•  Use fastqc to identify any adapter sequences that may need to be clipped 
 

NuGEN Ovation RNAseq System V2 

Resource:  http://www.nugen.com/sites/default/files/M01114_v4.1%20-%20User%20Guide,%20Ovation%20RNA
%20Amplification%20System%20V2.pdf 

•  Single Primer Isothermal 
Amplification protocol used in cDNA 
synthesis 
•  SPIA adapters linked to primers 

•  Fragmentation following cDNA 
synthesis, so most reads won’t have 
SPIA 

CTTTGTGTTTGA 5’ 3’ 

CTTTGTGTTTGA 5’ 3’ 
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Adapter detection 

•  Checking for adapters in your file: 
grep –B 1 –A 2 –colour “^CTTGTGTTTGA” L2_10d.1.raw.fastq 

 
 
 
 

•  To count sequences with an adapter  
grep –c  “^CTTGTGTTTGA” L2_10d.1.raw.fastq 
 

Resource:  http://linuxcommand.org/man_pages/grep1.html 

Adapter removal 

•  Tips:  
•  Trimmomatic doesn’t work well for short adapter sequences 
•  clipping multiple adapters in one pass may not work well 

•  Other options for adapter trimming: 
•  Flexbar: http://sourceforge.net/p/flexbar/wiki/Manual/ 

•  Adapter detection & removal 
•  Barcode detection, removal and read binning 
•  Filtering reads with uncalled bases 
•  Quality trimming and filtering 
•  Length trimming / filtering 

•  Cutadapt: https://pypi.python.org/pypi/cutadapt/   
•  FASTX-Toolkit: http://hannonlab.cshl.edu/fastx_toolkit/seq 
•  Seq_crumbs toolkit: https://bioinf.comav.upv.es/seq_crumbs/  
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Removing SPIA adapters with Flexbar 

Resource:  http://sourceforge.net/p/flexbar/wiki/Manual/     

•  Command 
flexbar --adapters 
Adapter.fasta --
adapter-trim-end LEFT 
--min-read-length 60 –-
reads L2_10d.
1.raw.fastq --reads2 
L2_10d.2.raw.fastq --
target L2_10d --
format=sanger --
adapter-min-overlap 7 

•  Result: 
•  Clip adapters 
•  Filter reads with uncalled 

bases 
•  Remove any reads <60bp 

Quality trimming & filtering with Trimmomatic 

Resource:  http://www.usadellab.org/cms/?page=trimmomatic 

•   Command: 
•  java -jar ~/bin/trimmomatic-0.33.jar PE -phred33 

L2_10d.spia_1.fastq L2_10d.spia_2.fastq L2_10d.1.fb-
tm.fastq L2_10d.1.junk.fastq L2_10d.2.fb-tm.fastq 
L2_10d.2.junk.fastq ILLUMINACLIP:Adapters.fasta:2:30:10 
SLIDINGWINDOW:5:20 LEADING:20 TRAILING:20 MINLEN:60 

•  Result 
•  Clipping any remaining Illumina sequencing adapters 
•  Clipping any bases from the end of the reads with quality score <20 
•  Sliding window quality trim 
•  Removing any reads that are <60bp after clipping and trimming 

•  Program prints basic statistics to standard output 
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Complexity filtering with seq-crumbs 

Resource:  https://bioinf.comav.upv.es/seq_crumbs/available_crumbs.html 

•  Seq-crumbs interleave fastq files   
•  interleave_pairs –o 

L2_10d.int.fb-tm.fastq 
L2_10d.1.fb-tm.fastq 
L2_10d.1.fb-tm.fastq  

•  Filter low complexity reads 
•  filter_by_complexity –o 

L2_10d.int.fb-tm-sc.fastq 
--paired_reads --
fail_drag_pair 
L2_10d.int.fb-tm.fastq 

  
•  Seq-crumbs de-interleave fastq files 

•  deinterleave_pairs –o 
L2_10d.1.fb-tm-sc.fastq 
L2_10d.2.fb-tm-sc.fastq 
L2_10d.int.fb-tm-sc.fastq  

 

Quality control, reviewed 

•  Quality trimming/filtering 
•  Adapter removal 
•  Quality trimming 
•  Length filtering 
•  Complexity filtering 

•  Result: confidence in 
sequence presented 

Before QC: 

After QC: 
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Contaminant filtering 

       

•  Do I need to do contaminant 
filtering? 

•  Questions to consider: 
•  Where did my worm live? 

•  Is the host’s genome 
available?  

•  If not, what’s the next best 
thing? 

•  Is my worm easily isolated from 
its host? 

•  What does my worm/host eat? 
•  Is my worm easily rinsed/

cleaned? 

•  What do you expect to see? 

Contaminant filtering with Bowtie2 

Resource:  http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml 

•  Bowtie for mapping when splicing IS NOT a consideration 

•  SILVA rRNA: http://www.arb-silva.de/ 
•  “SILVA provides comprehensive, quality checked and regularly updated 

datasets of aligned small (16s/18s, SSU) and large subunit (23s/28s, 
LSU) ribosomal RNA sequences for all three domains of life” 

•  Bacteria 
•  GenBank bacterial database 
•  Custom database (human microbiome project) 

Gene 1 Gene 2 Gene 3 
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Contaminant filtering with Tophat2 

Resource:  https://ccb.jhu.edu/software/tophat/manual.shtml 

•  Tophat for mapping when splicing IS a consideration 
•  Bowtie aligns reads that fall neatly within exons 
•  Tophat splits reads across introns/gaps 

•  Databases 
•  Human 
•  Host 

•  Intermediate  
•  Definitive 

•  Sources 
•  Genbank / Refseq 
•  Ensembl.org 

Exon 1 Exon 2 

Remove contaminant reads 

Resource:  https://broadinstitute.github.io/picard/explain-flags.html (explanation of sam flags) 

•  Index database 
•  bowtie2-build Pig.fasta Pig.fasta 

•  Map with bowtie 
•  bowtie2 –x Pig.fasta -1 L2_10d.1.fb-tm-sc.fastq -2 L2_10d.

1.fb-tm-sc.fastq –S MapPig.sam 
•  Map with tophat 

•  tophat2 –o L2_10d Pig.fasta L2_10d.1.fb-tm-sc.fastq L2_10d.
1.fb-tm-sc.fastq 

•  Counting mapped reads 
•  For BAM file:  samtools view –c –F 4 accepted_hits.bam 
•  For SAM file:  samtools view –c –S –F 4 MapPig.sam 

•  Remove contaminant reads and their mates as before 

•  Result: 
•  High quality base calls 
•  Confidence in the source of the reads 
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Results of quality control 

•  Count the number of reads maintained at each step! 
•  find . –name “*1.clean.fastq” | xargs wc –l 
•  Divide line count by 4 to get fastq entries 

Downsampled read set: 

  L2_10d L3_16d L3_17d L4_21d L5_42d L5_r163 L5_r179 Total 
Raw pairs 43,592,929 54,459,409 47,371,505 58,231,629 55,800,467 32,809,672 41,902,924 334,168,535 
Flexbar 39,229,484 48,195,339 42,272,646 52,090,873 49,524,734 24,877,392 37,657,504 293,847,972 
Trimmomatic 30,586,411 40,437,016 33,302,203 42,655,938 41,935,364 21,862,295 29,745,662 240,524,889 
SeqCrumbs 30,416,334 39,426,836 33,176,521 42,179,989 41,354,287 21,854,889 29,648,071 238,056,927 
Contaminants 26,501,312 36,740,860 32,956,606 39,675,217 39,508,530 21,780,296 29,469,388 226,632,209 
% maintained 60.79% 67.46% 69.57% 68.13% 70.80% 66.38% 70.33% 67.82% 

Full read set: 

  L2_10d L3_16d L3_17d L4_21d L5_42d L5_r163 L5_r179 Total 
Raw pairs 4,435,622 5,511,063 4,817,349 5,891,002 5,644,329 3,337,590 4,258,806 33,895,761 
Flexbar 3,991,748 4,878,344 4,298,728 5,270,820 5,009,942 2,530,803 3,826,835 29,807,220 
Trimmomatic 3,110,420 4,007,562 3,385,936 4,226,000 4,165,397 2,220,509 3,021,273 24,137,097 
SeqCrumbs 3,093,078 3,917,497 3,373,150 4,183,440 4,113,913 2,219,777 3,011,416 23,912,271 
Contaminants 2,696,239 3,643,862 3,350,928 3,927,395 3,926,103 2,211,368 2,993,460 22,749,355 
% maintained 60.80% 66.10% 69.60% 66.70% 69.60% 66.30% 70.30% 67.10% 

RNA-seq analysis overview 

RNA sequencing and 
read cleaning 

RNA-Seq dataset(s) No genome  
available 

de novo transcriptome 
assembly 

Map RNA-Seq reads 
to genome 

Genome  
available 

Map RNA-Seq reads to 
transcriptome 

Isoform  
reconstruction 

Table of read counts 
per transcript or gene 

model 

Table of read counts 
per gene 

Map RNA-Seq 
reads to isoforms 

Table of read 
counts per isoform 

or exon 

Downstream analysis (differential gene expression,  
clustering, PCA, functional enrichment, etc). 
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Section 2: Transcriptome 
Module 1: Genome based RNA-seq analyses 

1)  Splice-aware alignment and verification 
2)  Genome-assisted transcript assembly 
3)  Counting reads in features for differential expression analyses 
 
Resource:    http://www.nature.com/nprot/journal/v8/n9/pdf/nprot.2013.099.pdf  

Where to find a reference genome 

•  Sources: 
•  Genbank/Refseq 
•  Nematode.net 
•  Wormbase.org 

•  Requirements: 
•  Assembly fasta 
•  GFF3 
•  Functional annotation 

or protein/cds fasta 
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GFF3 format 

Resource:  http://www.usadellab.org/cms/?page=trimmomatic 

•  Column 1: contig or scaffold 
•  Must match the assembly fasta! 

•  Column 3: feature 
•  CDS, coding_exon 

•  Column 9: mRNAs/genes the feature belongs to 

Aligning reads with Tophat2 

Resource:  https://ccb.jhu.edu/software/tophat/manual.shtml 

•  Commands: 
bowtie2-build 
D918.fa D918.fa  
 
tophat2 -o L2_10d -G 
D918.gff3 
D918.fa ../module_0/
L2_10d.
1.clean.fastq ../
module_0/L2_10d.
2.clean.fastq 

 
•  -G option: 

•  “If this option is provided, TopHat will first extract the transcript sequences 
and use Bowtie to align reads to this virtual transcriptome. Only the reads 
that do not fully map to the transcriptome will then be mapped on the 
genome. The reads that did map on the transcriptome will be converted to 
genomic mappings (spliced as needed) and merged with the novel 
mappings and junctions in the final tophat output” 
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Counting reads within features with htseq-count 

Resource:  http://www-huber.embl.de/users/anders/HTSeq/doc/count.html 

•  Command: 
•  htseq-count –f bam 

–r pos –t CDS –i 
Parent 
accepted_hits.bam 
D918.gff3 > 
L2_10d.htseq.txt 

•  Arguments 
•  -f: format 

•  sam or bam 
•  -r:  order 

•  name or pos 
•  -t: feature type 

•  coding_exon 
•  exon 
•  CDS 

•  -i: feature ID 
•  Parent 

htseq-count output 

Resource:  http://www-huber.embl.de/users/anders/HTSeq/doc/count.html 

•  All values should be integers 
•  60-80% mapping rate is considered good 

•  Sum counts for all genes and divide by cleaned read pairs 
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Cufflinks: genome-assisted transcript assembly 

Resource:  http://www.nature.com/nprot/journal/ 
v7/n3/pdf/nprot.2012.016.pdf 

•  Assembly transcripts for each 
sample separately using Cufflinks
cufflinks –o CuffOUTPUT 
accepted_hits.bam 

•  Create a file that lists the 
assembly file for each sample
find . -name 
"transcripts.gtf" > 
assemblies.txt 

•  Run cuffmerge to create a single 
merged transcriptome annotation 
cuffmerge –g genome.gtf 
–s genome.fasta 
assemblies.txt 
•  Creates an output called 

merged.gtf 
 

 
•  Use gffread to print a fasta file of our transcripts 

gffread merged.gtf –g genome.fasta 
–w Transcripts.fa 
•  Options: 

•  -U:  discard single-exon transcripts 
•  -M:  collapse matching transcripts 
•  -K:  collapse shorter, fully contained 

transcripts 

RNA-seq analysis overview 

RNA sequencing and 
read cleaning 

RNA-Seq dataset(s) No genome  
available 

de novo transcriptome 
assembly 

Map RNA-Seq reads 
to genome 

Genome  
available 

Map RNA-Seq reads to 
transcriptome 

Isoform  
reconstruction 

Table of read counts 
per transcript or gene 

model 

Table of read counts 
per gene 

Map RNA-Seq 
reads to isoforms 

Table of read 
counts per isoform 

or exon 

Downstream analysis (differential gene expression,  
clustering, PCA, functional enrichment, etc). 
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Section 2: Transcriptome 
Module 2: De novo transcript assembly 

1)  Digital read normalization 
2)  De novo transcript assembly 
3)  Post-assembly filtering 
4)  Mapping raw reads to the assembly 

Problems with de novo transcript assembly 

•  Lots and lots of “puzzle 
pieces” 

•  Varying transcript abundance 
•  Alternative splicing 
•  Differential gene expression 
 

Resource:  http://arxiv.org/pdf/1203.4802v2.pdf 

  L2_10d L3_16d L3_17d L4_21d L5_42d L5_r163 L5_r179 Total 

clean read 
pairs 26,501,312 36,740,860 32,956,606 39,675,217 39,508,530 21,780,296 29,469,388 226,632,209 

Isoform #1 

Isoform #2 
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Data reduction methods 

Gene A Gene B What do you do when there’s too 
much information? 

•  Wet-lab based cDNA normalization techniques 
•  Random down sampling 
•  Digital read normalization 

Resource:  http://arxiv.org/pdf/1203.4802v2.pdf 

Digital read normalization 
•  Solution: “a computational algorithm that systematizes coverage in shotgun 

sequencing data sets, thereby decreasing sampling variation, discarding redundant 
data, and removing the majority of errors” 

•  Method: 
•  K-mer abundance correlates well with mapping-based estimates of read 

coverage 
•  K-mers tend to have similar abundances within a read since they originate from 

the same DNA/RNA molecule 

•  Estimate k-mer abundance (i.e., read coverage) to make the following 
determination 

for$read$in$dataset:$
$if$estimated_coverage(read)$<$C:$
$ $accept(read)$
$else:$
$ $discard(read)$Resource:  http://arxiv.org/pdf/ 

1203.4802v2.pdf 
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Normalization software 

•  Khmer: http://khmer.readthedocs.org/en/v1.4.1/ 
•  Detailed protocol: 

http://khmer-protocols.readthedocs.org/en/v0.8.2/mrnaseq/2-diginorm.html 
•  Decide which reads need to be maintained 
•  Trim off low abundance parts of high coverage reads (i.e., errors) 
•  Re-pair reads 

•  Trinity implementation: 
•  https://trinityrnaseq.github.io/trinity_insilico_normalization.html 

 

•  For an explanation of the difference, see this blog post: 
•  http://ivory.idyll.org/blog/trinity-in-silico-normalize.html 

 

De novo transcript assembly with Trinity 

Resource:  http://trinityrnaseq.github.io/ 

•  Trinity approach 
•  Inchworm: assembles reads into unique sequences of transcripts, often 

generating full-length transcripts for a dominant isoform, and reporting 
unique portions of alternatively spliced transcripts 

•  Chrysalis: clusters inchworm contigs into complete de Bruijn graphs for 
each cluster 

•  Butterfly: processes the individual graphs to report full-length transcripts for 
alternatively spliced isoforms 

•  Trinity command: 
Trinity --seqType fq --max_memory XXG --left AllLeft.fastq 
--right AllRight.fastq --normalize_reads –output TRINITY 

•  Time and memory: 
•  Approximately 1G of RAM per million read pairs 
•  Approximately 0.5-1h per million read pairs 
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Trinity output 

http://trinityrnaseq.github.io/#trinity_output 

•  Trinity will create a Trinity.fasta output file in the specified output directory 
•  Trinity groups transcripts into clusters based on shared sequence content. 

These clusters are loosely referred to as “genes” or “unigenes”. This information 
is coded in the trinity accession. 

Assembly statistics 

Resource:  http://trinityrnaseq.github.io/#trinity_output 

•  Command:  
perl ~/bin/
trinityrnaseq-2.0.6/util/
TrinityStats.pl 
Trinity.fasta 

•  In a perfect assembly, “unigenes” = 
expressed genes 

 
•  Why are there so many genes/

transcripts? 
•  Fragmentation 
•  Low-confidence transcripts 

“Test” assembly: 
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Assembly filtering 

Resource:  http://trinityrnaseq.github.io/analysis/abundance_estimation.html 

•  Align reads and estimate abundance 
perl ~/bin/trinityrnaseq-2.0.6/
util/
align_and_estimate_abundance.pl --
transcripts Trinity.fasta --seqType 
fq --left ../AllLeft.fastq --
right ../AllRight.fastq --
est_method RSEM --output_dir RSEM 
--aln_method bowtie2 --
prep_reference 
 

•  Filter lowly supported transcripts 
perl ~/bin/trinityrnaseq-2.0.6/
util/filter_fasta_by_rsem_values.pl 
--rsem_output=RSEM.isoforms.results 
--fasta=../Trinity.fasta --
output=Trinity.filtered.fasta --
tpm_cutoff=1.0 --isopct_cutoff=1.00 

Unfiltered Filtered 
# unigenes 153,461 59,050 

# transcripts 251,721 91,029 

Ave 
transcript 
size 

460 bp 563 bp 

Alternative 
splicing 

24.8% of 
unigenes, 
ave 3.6, 
max 85 

24.4% of 
unigenes, 
ave 3.2, 
max 20 

% pairs 
mapped 

68.3% 66.3% 

Paragonimus kellicotti assembly: 

Feature counting for differential expression 

Resource:  http://trinityrnaseq.github.io/analysis/diff_expression_analysis.html 

•  Prepare reference 
perl ~/bin/trinityrnaseq-2.0.6/util/
align_and_estimate_abundance.pl --transcripts 
Trinity.filtered.fasta --est_method RSEM --aln_method bowtie2 
--prep_reference 
 

•  Align reads and estimate abundance 
perl ~/bin/trinityrnaseq-2.0.6/util/
align_and_estimate_abundance.pl --transcripts 
Trinity.filtered.fasta --seqType fq --est_method RSEM --
aln_method bowtie2 --left ../../../module_0/L2_10d.
1.clean.fastq --right ../../../module_0/L2_10d.2.clean.fastq 
--output_dir L2_10d 
 

•  Join the abundance values for each sample into matrix for DESeq2 
perl ~/bin/trinityrnaseq-2.0.6/util/
abundance_estimates_to_matrix.pl --est_method RSEM L2_10d/
RSEM.genes.results L3_16d/RSEM.genes.results … 
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Feature counting for differential expression 

Resource:  http://trinityrnaseq.github.io/analysis/diff_expression_analysis.html 

Cooperia punctata count table 

  
HIGH.genes. 

results 
LOW.genes. 

results 
UntreatedA.genes. 

results 
UntreatedB.genes. 

results 
comp197262_c2 53.02 51.97 24 107 
comp196358_c0 90 125 104 91 
comp194909_c0 3 2 0 79.07 
comp189445_c0 15 5 7 15 
comp199614_c0 19 23 24.67 18.89 
comp191897_c2 16 20 26 3 
comp196155_c1 223 283 119 467 
comp196537_c0 74.2 98 38.67 200.96 
comp194722_c1 11 6 1 33 
comp200992_c1 9.24 21.98 27 11 
comp189025_c0 57993.94 35917.49 21809.97 76141.69 
comp195426_c0 32 74.17 52.45 100.2 
comp197998_c0 27 8 12 13 
comp201556_c2 22 19 22 25 

RNA-seq analysis overview 

RNA sequencing and 
read cleaning 

RNA-Seq dataset(s) No genome  
available 

de novo transcriptome 
assembly 

Map RNA-Seq reads 
to genome 

Genome  
available 

Map RNA-Seq reads to 
transcriptome 

Isoform  
reconstruction 

Table of read counts 
per transcript or gene 

model 

Table of read counts 
per gene 

Map RNA-Seq 
reads to isoforms 

Table of read 
counts per isoform 

or exon 

Downstream analysis (differential gene expression,  
clustering, PCA, functional enrichment, etc). 
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Section 2: Transcriptome 
Module 3: Expression and differential expression 

- For this module, we will be off of the server and working directly on your laptops.  
 
- We will use data files that you downloaded using scp yesterday, which should be 
saved in ~/Desktop/WORKSHOP_RESOURCES/Section_2/module_3/. Please check 
that you have downloaded files and folders to this directory. 
 
- Raw data was produced in the previous modules. 
 
- You should already have both RStudio and MS Excel installed on your laptops, as 
requested before the class started.  

Introduction - Expression and differential expression  
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Differential gene expression software 

- Calling differentially expressed genes is a complicated statistical problem. 
- “Dispersion” of a gene or a sample is used to estimate baseline (within-replicate) 
variability, and is essential for accurate statistical measurement. Genes with high inter-
replicate variability should not be considered “differential”.  
- Some measure of dispersion is calculated by all widely-accepted differential callers, 
but they all calculate it in slightly different ways.  
- Three software packages are primarily used: DESeq, EdgeR, and CuffDiff. Others 
include SAMseq, baySeq, NOIseq, and EBSeq.  
- DESeq and EdgeR are the two most commonly used differential gene expression 
calculation packages. These produce similar overall results in terms of final gene lists.  
 
How to choose a differential expression caller 
- The primary practical difference between DESeq and EdgeR is sensitivity (i.e. the 
number of genes called differential).  
- If you are interested in transcript / isoform data, then use CuffDiff. CuffDiff tends to 
be very stringent (fewer differentially expressed genes than DESeq or EdgeR). 
- SAMseq can be useful for cross-sample differential expression calling, but should not 
be used for two-sample comparisons.  
- Having a larger set of differentially expressed genes is not necessarily better!  
- More differentially expressed genes = more false positives, and a larger set of genes 
to summarize for biological interpretation.  
 
 

http://bib.oxfordjournals.org/content/early/2013/12/02/bib.bbt086.long 

CuffDiff 

-  CuffDiff considers read counts per exon, and can 
identify significant changes in exon use and 
isoform abundance for the same gene.  

 

-  This is useful (a) for model organisms where 
there is known functional significance for specific 
exons/isoforms or for (b) for studies of a subset 
of specific genes of interest. 

-  At a genome-wide level, quantifying differential 
exon usage complicates downstream analysis 
without providing practically useful data. 

-  For example, it is difficult to perform genome-
wide functional enrichment testing on 
differentially expressed isoforms, since multiple 
isoforms from the same gene can contribute to 
enrichment scores. 

http://www.nature.com/nbt/journal/v31/n1/fig_tab/nbt.2450_F2.html 
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Replicate considerations 

- At least triplicate is preferred for accurate analysis. 
 
- Some samples may be lost due to very high variability from other replicates or low 
quality RNA, so duplicate is risky (single-replicate produces unreliable statistics). 
 
- Collecting the replicates by repeating an experiment at a later time almost never 
works for helminth studies. 
 
- Both DESeq and EdgeR can be executed with single replicates, but use different 
statistical models.  
 
- Another program called GFOLD is designed specifically for single-replicate samples, 
but these comparisons with any software are not confident without additional 
validation (e.g. qPCR of identified genes). 
 
- Track metadata carefully whenever possible. E.g., the number of worms collected, 
whether there is a possibility of having mixed samples (male and female, L3 and L4, 
etc), time of sampling, etc. This may help to explain within-replicate variability in some 
cases.  

Gene clustering 
- Another analysis approach is to cluster samples based on their overall expression 
patterns across all available RNA-Seq datasets.  
- While this is useful for grouping and classifying genes, the clusters only consider the 
pattern and do not consider whether the genes are statistically differentially expressed.  
- One tool called Short Time Series Expression Miner (STEM) clustering will also identify 
over-represented patterns, representing clusters of probable biological significance.  

Mfuzz Clustering 

STEM Clustering 

http://www.biomedcentral.com/1471-2105/7/191 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2139991/ 
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Differential gene expression measurement 

Experimental design considerations: What are the samples you want to compare? What 
approach will you use to compare them?  
 
Example 1: Treatment(s) vs Control 
 
1A. Simple treatment / control pair: 
 
 
 
- Which genes are high in treatment (upregulated) or lower in treatment (downregulated)? 

  
 
1B. Control vs multiple treatments 
(e.g. high and low doses of a drug treatment) 
 
 
 
 
 
 
 
 
- Which genes are upregulated or downregulated by both treatments, and which ones are  
only differentially regulated by high-dose treatment but not low? 

Control 

Low 
Dose 

High 
Dose 

Control  Treatment 

Differential gene expression measurement 

Example 2: Tissue-based (unordered, multiple samples)  
e.g. Whole-worm, intestine, pharynx, and male and female reproductive tissue.  
2A. Each compared to whole-worm:   

- What are the tissue-specific overexpressed genes relative to the whole-worm sample? 

Whole worm 

Intestine 

Pharynx Male Reproductive 

Female Reproductive 

2B. Each compared to all other tissues: 

- What are the tissue-specific overexpressed genes relative to the other sampled tissues? 

Intestine, Male Reproductive, Female Reproductive Pharynx 

Pharynx, Male Reproductive, Female Reproductive Intestine 

2C. Cross-sample combinatorial comparisons 

- Some cross-sample differential expression callers (e.g. SAMSeq) can identify combinations 
of samples with upregulation (e.g. upregulated in both pharynx and intestine relative to other 
tissues). 

http://statweb.stanford.edu/~tibs/SAM/ 
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3B Grouped :   L2   L3    L4   L5 

Differential gene expression measurement 

Example 3: Stage-based (time series) data  
(e.g. L2, L3, L4, L5 larvae) 

  

3A Pairwise :  L2       L3         L4            L5 
- Which genes are upregulated in one stage vs its 
surrounding stage(s)? 

- Which genes are upregulated in early stages relative 
to late stages? 
- Stages are treated as pseudo-replicates for each 
other. 

3C Individual :   L2                    L3  L4         L5 

Individual :  L5    L2       L3         L4 

Etc. 

- Which genes are upregulated in one stage relative to 
all others? 

- R is a free software environment for statistical computing and graphics.  
- RStudio is a set of integrated tools to make R much easier to use. 
 
- “Packages” of existing software can be downloaded, installed, and 
loaded easily.  
- Many bioinformatics tools (especially for statistics analysis) are 
available exclusively in R. 
- You can typically work with R by modifying existing scripts, most of 
which can be downloaded from manuals or other internet resources. 
 
- In this module, we will learn how to use R studio to: 

 - Install libraries, set the working directory and input files 
 - Run DESeq2 for differential gene expression analysis 
 - Run PCA and hierarchical clustering  
 - Run GOSTATS for enrichment of differentially expressed genes 

 

Using RStudio 
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Using  
RStudio 

1. Script Window 
- Load, modify, and run commands 

2. Console 
- Output from running commands 

3. Environment 
- Interactive list of 
objects loaded 

4. Packages / 
Plots / Files 
- Load and view 
packages, view and 
save plots, view files 
in current directory 

- The RStudio 
interface is 
split into four 
windows. 
 
- If you only 
download R, 
then you will 
only have the 
console to 
work with. 

An example of interacting with RStudio 

- From the menu, select “choose directory” as shown above, to set the working 
directory where files will be loaded from and saved to. Set to ‘~/Desktop/
WORKSHOP_RESOURCES/Section_2/module_3/’ for this course. 
 
 
 
 
- When you do this, you will see the “setwd” R command ran in the console. This can 
then be copied and pasted in the script window. 
 
 
 
- If you were to save this script in the future, you could now highlight and run this 
command in order to set the working directory more easily.  
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Installing R packages 

- Now open the “Helminth_Genomics_Workshop_Script.R” file. This contains all of the 
commands we will need for the workshop.  
- Any information following a # sign is a comment to clarify what the code is for.  
- First, we will install packages. Packages are either installed directly using 
“install.packages()”, or they are loaded through bioconductor (“biocLite”). 
- Highlight the code shown and click “run” to install all of the necessary packages. 
- The manuals for different R packages will include the line necessary to install them.  
- Installations only need to be performed one time on each computer, but the packages 
need to be loaded every time R is restarted.  

Loading R packages 

- After you install packages, they will show up in the “Packages” list in your RStudio 
sidebar. To “load” the packages in the future, you can simply check them off. When you 
do, you will the package loading code in the console window.  
- This code can also be pasted into scripts. Note that the full path is not necessary (e.g., 
in the screenshot below, you can just use library(“DESeq2”) instead, which will make 
your script compatible on other people’s computers.  
- Packages can also be searched and installed from this menu, but it is typically easier 
to paste the install code from a guide. 

- 60 -



- Almost all differential expression callers require raw reads as input.  
- We generated read counts per sample from HTSeq output in the previous module.  
 
- Open “tsuis_rnaseq_htseq_countstable.txt” from the DESeq directory (in MS Excel) 
- This file contains unprocessed HTSeq count output (from the previous module) for T. 
suis collected from different stages. All downstream work will be performed on this 
dataset. 
- Note that this is saved as a tab-delimited text file. This will be the standard output 
from most linux programs. If you save in Excel, you will need to specify this format in 
the “Save as” menu.  
 
 
 
 
 
 
- DESeq requires the genes to be listed in the first columns, the samples labeled in 
the first row, and read counts in the matrix. This is standard to many of the other 
differential callers (including EdgeR) 

Preparing and loading input files: DESeq analysis  

- After setting the working directory and loading DESeq, we load the input reads file. 
- In R, “objects” are defined using an ‘arrow’ <- 
- We will call the object for the HTSeq counts table “COUNTS” 
- It is important to understand the input command because (a) it is often omitted when 
you download scripts (they assume you know how to do this) and (b) having the input 
formatted or loaded incorrectly is a very common reason that scripts don’t work when 
they are launched. Pay close attention to manuals describing input data.  
 

Loading input files 

Object 
name 

Load as a  
matrix object  
(not always 
necessary) 

Most typical 
command for 
loading data 

Filename in 
working 
directory 

Separator for 
the text file; Can 
also be comma 
or space, but \t 
(tab) is the most 

common. 

Set to 
“FALSE” if 
there are 

no headers 

Omit if 
there are 
no row 
names 
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- For DESeq, you will also need to prepare a metadata file describing your samples. 
- This input file is formatted as shown below. Column names can be customized, but the 
first column must contain sample names corresponding to the counts table.  
 
 
 
 
 
 
 
- The samples that you want to compare should be grouped in one of the columns. Here, 
we will focus on “Comparison1”, which is early larval stages vs late stages. 
- You will need to construct this metadata file yourself prior to running R. We will look at 
creating tables in Excel later in this module. 
 - Unlike the read counts table, this input command is not loaded “as.matrix”, but is just a 
table: 
 

Loading input files 

- In RStudio, loaded objects show up in the environment window.  
- If you click on the table icon to the right of the object, you can view the object (in the 
script window) to ensure that files have loaded properly.  
- Checking to see if intermediate objects are empty (“NULL”) is a good way to 
troubleshoot where problems are starting.  

Managing data 
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- In some cases, there are secondary factors to consider. For example, samples may 
have been collected in two batches, introducing potential variance independent of the 
comparison.  
- This data can be specified in the metadata file, and considered by DESeq using the 
following syntax: 
 
 
- This is also useful in cases of paired samples (e.g., the same individuals before and 
after treatment). DESeq and EdgeR can both utilize secondary factors, but CuffDiff and 
other software cannot.  

- First, we will make “dds”, the DESeq DataSet object 

Running DESeq 

Dataset  
name 

DESeq command 
(loaded with package) 

COUNTS dataset 
we previously defined 

META dataset 
we previously defined 

Header name META 
that we want to use  
for the comparison 

- The following line runs the core DESeq code: 
 
 
- Then, this summarizes the results, and writes the summary to a file: 
 
 
 
 
 
 
The results are also shownin the console: 
 
 
 
 
 
 
 
- This shows that at an adjusted p-value of 0.1, ~36% of genes are differentially 
expressed.  
- We will parse the output manually later, with a different p value cutoff.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Running DESeq and saving results 
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- Next, we prepare the output data: 
 
 
 
 
 
 
 
 
 
- Finally, the write.table command is used to export the results to a file in the working 
directory. We’ll look at the results later, during the Excel tutorial.  
 
 
 
 
 
 
 
 

Running DESeq and saving results 

We will 
save this 

object to a file  
in the next 
 command 

Interpret 
dds object 

as readable 
results 

Define 
comparisons 

Header 
name 

from the 
META 

file 

First 
comparison 
group name 
under the 
header 

Second 
comparison 
group name 
under the 
header 

Object 
name 

Output 
filename 
(try to be 

descriptive) 

Tab 
delimited 

- Excel is a spreadsheet program which is useful for organizing and visualizing data, 
calculating statistics, and performing analyses. 
- Today we will learn a variety of approaches for using Excel to work with whole-genome 
data, with a focus on maintaining data integrity and organizing data in the most 
accessible way possible. 
- We will go from several raw data files (generated in previous modules) to a complete 
database with functional annotation data, expression levels, differential expression data, 
and more.  
- Open “Module 3 Table Completed.xlsx” in the ‘Excel’ folder to view a copy of the 
completed database, before we create it.  

Introduction to Microsoft Excel 
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- The spreadsheet is laid out in a coordinate system of “cells” with lettered columns and 
numbered rows. Numbers or string can be entered into any cell just by typing and 
pressing enter.  
- Navigate the spreadsheet using either your cursor or by using the arrows on your 
keyboard. Multiple cells can be highlighted with the keyboard by holding shift and 
scrolling with the arrows.  
- Formulas can be entered in any cell by entering an “=“ sign.  
- All formulas follow a specific format of the “=“ sign, the formula name, an open bracket, 
variables, and a closed bracket. 
- As you type a formula, a yellow box will pop up to tell you what variables can be 
entered. Here, I am calculating the average of a series of numbers, in cell B2. The 
yellow  box indicates that I should enter the numbers with commas in between: 
 
 
 
 
 
- After you close the bracket and press enter, the cell value will show the result of the 
formula, but the formula bar will show the formula itself, when cell B2 is selected: 
 

Introduction to MS Excel: Formulas 

- Formulas can also be calculated on references to cells containing numbers. This is the 
same formula, but the numbers have been replaced with references to cells containing 
numbers: 
 
 
 
 
 
- Rather than list all of the cells, cell ranges can be used. This follows the format of the 
first cell, a colon, and then the last cell: 
 
 
 
 
 
 
- Ranges can span columns and rows (e.g., take the average of a large table). 
- Cell references do not need to be typed in manually. You can select the range with your 
mouse, or you can use the keyboard to select it, after typing the formula and opening  
the bracket.  
- A full list of Excel formulas can be found here: 
http://www.techonthenet.com/excel/formulas/ 

Formulas in MS Excel 
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- Open ~/Desktop/WORKSHOP_RESOURCES/Section_2/module_3/Excel/
tsuis_rnaseq_htseq_countstable.txt, in Excel. 
- This is a large table, with 9,833 rows and 8 columns, but we are going to add more 
columns as we build the database. 
- If you hold down the “command” key on a Mac (�) or the “CTRL” key on Windows, 
and then scroll with your keyboard arrows, the selection will skip to the end of the table. 
This becomes essential for highlighting all of the cells in a column in a large table, since 
scrolling with the mouse can take several minutes. 
 - The first thing we will do is insert four empty rows above the dataset and one below 
the headers, in order to make room to add more detailed descriptions.  
- To do this, right click on the number on the left-hand border, and choose “insert”. New 
columns or rows will enter above (rows) to the left (columns) of the insertion point.  
 
 
 
 
 
 
 
 
 
 
 
 

Working with large datasets 

- The most important thing when working with these spreadsheets is to never sort the 
data incorrectly. Not only will all of the results be wrong, but it will be very difficult to tell 
that something went wrong. 
- For this reason, you should never use “Data -> Sort” to sort your data. Instead, always 
use the “filter” feature.  
- In this example, I am highlighting (selecting) the empty row below my headers and then 
clicking the funnel icon that says “Filter” below it (under the “Data” tab of the ribbon).  
 
 
 
 
 
 
 
 
 
 
 
 
- Once this has been clicked, small grey arrows will appear in the row that was 
highlighted. 
 

Sorting data in Excel 
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- When you click on these “sorting arrows”, you can choose to sort a column of your 
choice, either ascending or descending. All of the data that is underneath an arrow will 
sort with that data, every time. If you were to sort manually, it is up to you to select the 
entire dataset every time, so this is the safe option to ensure data integrity.  
 
 
 
 
 
 
 
 
- Since we are going to add more data, we want the arrows to extend very far to the right 
of the spreadsheet, so that new data will also sort. Excel will only let you add the arrows 
to columns spanning any actual content, so scroll far to the right with the keyboard and 
add a space with the spacebar to a cell in row 6 (for example, in cell EA6). Then, hold 
shift and command/CTRL, and press left to scroll all the way back, highlighting all of the 
cells along the way. With the entire row selected, press the filter button in the “Data” tab 
of the ribbon.  
- Now, as we add data to the table, all of it will be sortable and will stay organized.   
- I do not recommend ever actually using the “Filter” functionality, since this hides  
rows from view.  
 

Sorting data in Excel 

- Descriptive, organized headers are essential for keeping your data organized, 
communicating your data to others, and for keeping track of where results came from. 
 
 
 
 
 
- Start by inserting a column before the read data, and adding row labels for the 
metadata. Always retain the original sample names from the raw data so that data can 
be compared in the future.  
- Next, in cell C2, type "HTSeq output (tsuis_rnaseq_htseq_countstable.txt, Sept 11 
2015)”, because this is a complete, descriptive header for this entire set of columns. 
Then highlight cells C2:J2, and click “Merge” under the “Home” tab of the ribbon: 
 
 
 
 
 
 
- This groups all of the columns together, while still allowing them to have separate 
descriptions. Each set of data with more than one column should be formatted this  
way to keep it as organized as possible.  

Formatting headers 
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- Use borders to box off the 
headers and the different 
sections of data. To do this, 
highlight a cell range, then 
click the borders box in the 
“home” section of the ribbon.  
- For database tables, “Thick 
Box Borders” make it easier to 
read. For any table that is to 
be printed or published, the 
thinner “outside borders” look 
better.  
- Reminder:  Use  
Command/CTRL + shift and  
the arrow keys to highlight all 
of the data to the very bottom, 
to add borders to the entire 
data block.  
 

Formatting headers 

- Finally, highlight your data, and use the font settings in the ribbon to make it more 
readable. 
- Choose Arial size 10 font, and center the data whenever it’s not in a long string 
format. 
- Major headings can be bolded.   
- Adjust the column widths by dragging from the edges of the column letters on the 
outside of the sheet, so that they only use as much space as needed.  

Formatting headers 
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- Under “Layout”, and then “Freeze Panes”, you can choose to ‘freeze’ all of the rows 
above and all of the columns to the left of the currently selected cell. 
- Doing this will lock the headers and gene names in place, so that when you scroll 
through the table, you will always be able to see this critical data.  

Freezing panes 

Adding additional data: Gene Lengths 
- We will use the gene lengths to calculate FPKM values from the raw counts table. 
- First, open up “gene lengths.txt” from the Excel folder, select the entire table, and copy 
it to the clipboard. 
- Now, go back to your main file and make a new “sheet” in Excel by clicking the + sign 
on beside the tabs at the bottom. Paste the data into this second sheet, so that it doesn’t 
paste mis-aligned into the main table.  
- Add a header to your main table for where the new data will go.  
- The “wrap text” font feature is helpful when the header name is long but the data will 
not be wide. 
 
 
 
 
 
Why don’t we just sort the two tables by gene name and then copy and paste the 
data? 
- Because even if the same number of genes is present, we can’t necessarily trust that 
every gene is present or entered in the same way.  
- For example, in an updated genome draft, one gene can be removed and one new 
gene can be added. The genes at the start and ends of the table will match, but there 
will be mismatches for every gene in between these two. Any mistakes in a gene  
name will cause you reach false conclusions about your entire dataset.  
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Looking up data in Excel with =VLOOKUP 
=VLOOKUP is one of the most useful formulas in Excel, and allows for looking up 
matching values in a Vertical reference list.  
The syntax is: 
= VLOOKUP ( [Value to lookup], [Table containing the value in the first column],  

     [column number to return], FALSE) 
 
- In this case, we want to look up the gene length corresponding to each gene name in 
the main table. We will start with the first gene, which is in cell B7 in this example: 
 
 
 
 
 
 
 
 
- Type “=VLOOKUP(B7,” and then click to the second tab in your file containing the gene 
lengths. Highlight this entire table using Command/CTRL+Shift and the arrow keys, and 
then type a second comma. If you make a mistake doing this, just press escape and 
start over. Then, click back to your main table, and finish the formula with “2” and 
“FALSE” as the last two entries. 
 

Looking up data in Excel with =VLOOKUP 
- This formula now identifies the gene length of the first gene (in cell B7) by referencing 
the table in Sheet 2, cells B2:C9834, by matching the gene name in the first column and 
returning the value in the second column. The last value of “FALSE” is necessary 
because “TRUE” will allow approximate matches. This should always be false in all 
cases for any scientific work. 
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Copying and pasting formulas in Excel 
- Copy and paste the VLOOKUP formula to the cell below it, to look up the value of the 
second gene. You can right click or use the menus to do this, but I recommend getting 
used to Command/CTRL+C and Command/CTRL+V to do this.  
- Note that in Excel, if you copy and paste a formula down one row, all of the cell 
references in the formula also move by one row (also with columns). Here, we are now 
looking up cell B8, to get the value for the second gene instead of the first.  
- While this is useful, we have to be careful, because the cell references for the lookup 
table of gene lengths (in sheet 2) has also moved down (from B2:C9834 to B3:C9835). 
 
 
 
 
 
 
 
 
- In order to fix this, we can use $ signs to “lock” the row references in place for the 
lookup table.  
- Any column letter or row number with a $ in front of it will not change when the formula 
is copied and pasted. 
- Return to the first formula cell and change the  
reference to B$2:C$9834, and paste that down. 
 
 
 
 
 
 
 
 

Filling and ‘clearing’ formulas 
- We need to paste the formula down the entire column.  
- Copy the formula, then scroll to the bottom of the table by command/CTRL+down on 
one of the gene count columns. 
- Starting at the bottom of the ‘gene lengths’ column, hold shift and command/CTRL and 
press up, to highlight the entire column. Then, paste with command/CTRL+V. 
- Now we have aligned all of the gene lengths. 
- The formulas are still “active” and will re-calculate 
every time the table is sorted or the file is saved. 
Enough of these active formulas will cause the 
spreadsheet to slow down or crash eventually. 
- We will therefore “clear” the formulas, leaving their 
values behind. 
- To do this, highlight the entire column and copy 
(command/CTRL+C), and then within the copied 
cells, right click and choose “paste special”. 
- In the “Paste special” dialog, choose “values” and 
then click “ok”. 
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Checking for formula errors 
- Formulas in Excel can return errors. In the case of =VLOOKUP, if there is no lookup 
value in the reference table, it will return ‘#N/A’, indicating that there is no match in the 
lookup table. 
- All errors start with a # sign, so they can be searched easily. 
- After clearing the formulas (previous slide), highlight the column and press command/
CTRL+F to search. 
- If there is no match in this search, then all of the genes were matched up and there is 
no problem.  
 

Calculating FPKM values 
- We can now calculate FPKM expression values from the raw read counts. Start by 
copying and pasting the read count headers to the right of the gene lengths, and change 
the title of the new header set: 
 
 
 
 
- FPKM = Fragments (counts from HTSeq) Per Kilobase (gene length / 1000) per Million 
of reads mapped (the total read count in the sample’s column in the HTSeq data). 
- This gene expression measure is used because it is normalized both for the gene 
length and the library size, making the values directly comparable across the entire 
dataset, and between different experiments.  
- We can calculate all of this in a single formula. Start by dividing by the count by the 
gene length as shown below: 
 
 
 
 
 
 
- Using parentheses organizes the formula to ensure that the order of operations is 
correct (i.e., we are not dividing D7 by L7 first, and then dividing by 1000).  
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Calculating FPKM values 
- Now all of this needs to be divided by (the library size / 1,000,000). So put the entire 
existing formula in parentheses, and then divide by (the sum of the sample’s column / a 
million): 
 
 
 
 
 
 
 
- Verify this value to ensure that the formula is typed correctly (D918_00003 in L2 = 
2.6339).  
- We need to lock several things in place in order to copy and paste for the entire table. 
First, the reference to L7 (the gene length) needs to move down, but not left-to-right, so 
put a $ sign in front of the L but not the 7. 
- Second, the “sum” range needs to be locked to the rows but not the columns. So 
change that to D$7:D$9838, so that the columns move with the formula.  
- The final formula should look like this: 
 
 
 
 

Aligning additional data 
- Copy and paste this formula for the entire FPKM table, and then clear the formulas and 
check for errors as shown previously.  
- This normalized data will later be used as input for hierarchical clustering (in R), but for 
now we will continue building the database.  
- Open “secretion data.txt” in the “Excel” directory, and paste into the second sheet of 
your database file as before.  
- This data is output from two different programs (Phobius and SecretomeP)  
- Create headers for the data in your main table: 
 
 
 
 
- Set up the =VLOOKUP formula for the first row and column: 
 
 
 
 
 
 
 
- This data needs to be pasted both down and to the right. Using $ signs, lock the 
column of the gene name, and the entire table:  
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Aligning additional data 
- When pasting to the right, we also need to change the “2” to a “3” in the formula, to 
return the value of the third column in the lookup table instead of the second.  
- Also change this value to a “4” in the last column. Then, copy all three values and 
paste down for the entire table, clear formulas, and check for errors.  
 
 
 
 
 
 
 
 
- Now we will add an additional column, to indicate if each gene is secreted either by 
classical or nonclassical secretion. This should be a “Y” if either of the other two columns 
are a “Y”. We will use an =IF statement to perform this.  

=IF is a very useful Excel formula for parsing data. The syntax is: 
=IF( [A logical test returning true or false, usually =, <, >, or =>, <=], [value if true], [value 
if false] ) 
- So for example, try entering =IF(1=2,”Yes”,”No”). 
- This will return “No” in the cell, because the ‘logical test’ is false. If you change this to 
1=1, then it will return “Yes”. 
- Here, we need to check whether either of the cells beside the new column are “Y”. In 
order to accomplish this we will use OR() in the logical test: 
 
 
 
 
 
 
 
 
- Copy and paste this formula, clear values, and check for errors before moving on.  
 
 

=IF formula 
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- In the empty ‘sorting’ row below your secretion header, use the =COUNTIF formula to 
count how many genes are secreted according to each criteria. 
=COUNTIF( [range of cells to count], [criteria for counting] ) 
 
 
 
 
 
 
 
- Here, we are counting how many “Y” values there are in the column. Paste this to the 
right to count for each criteria: 
 
 
 
 
 
 
 
- This is an easy way to summarize your data. You can also check if values are greater 
than zero ( “>0”), if values are larger than the value in another cell, etc.  
- =COUNTIFS (with an S) can check multiple criteria in multiple columns. 
 
 
 

=COUNTIF formula 

- Open “interproscan_annotations_per_gene.txt” from the “Excel” file, and copy and 
paste into the second sheet as before. 
- Prepare the headers and use =VLOOKUP as before: 
 
 
 
 
 
 
 
- This time there is an #N/A value because the lookup table does not contain 
unannotated genes. Paste the formulas through, and then clear the formulas. 
- Now, replace the #N/A values with “-”, to clean up the table. 
- When long strings “hang” over into the next cell, add an 
empty space in the column to the right, to cover it up: 
 
 
 
 

Annotation data (lookup with missing values) 
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- Now we will add the DESeq results we calculated in RStudio. 
- Open the “Comparison1_Early_vs_Late_tsuis_deseq2_output.txt” file in the DESeq 
folder, and paste it into the second sheet of the dataset as before. 
- First, note that the headers are all shifted to the left by 1 column. Cut and paste those 
to the right to fix this. This problem commonly occurs with R output (row.names has no 
header entry), so always be sure to check for an empty final column. 
 
 
 
 
 
 
 
From the DESeq manual: 
 
 
 

Parsing DESeq results 

- We are only interested in the Log2 Fold Change and Adjusted P value, so delete the 
other columns by right-clicking the column letters on the border and deleting them: 
 
 
 
- Set up these headers in the main sheet, and perform the VLOOKUP for these values, 
then add two headers, for the average FPKM values from the two sample groups: 
 
 
 
 
 
 
- Use =AVERAGE to calculate the average value of the sample groups, then paste the 
formulas down and clear the formulas.  
 
 
 
 
 
 
 

Parsing DESeq results 
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- We want to know whether each gene is significantly differentially expressed in either 
early larval or late larval stages. Start by setting up additional headers: 
 
 
 
 
 
 
- We can see that a negative fold change corresponds to a gene that is higher in the late 
stages than the early stages (and vice versa for a positive value).  
- Therefore, in order to call a gene significantly higher in the early stages: (a) the fold 
change value needs to be greater than zero, and (b) the P value needs to be less than a 
threshold value of your choice. 
- DESeq recommends a maximum threshold P value of 0.1, but we will parse more 
conservatively, at 0.01 instead.  
- For a very high-confidence small gene set, a threshold of 10-5 could be used.  
- Generally, 0.05, 0.01, or 10-5 are used for publications. 
- Fold change thresholds should not be used for RNA-Seq data. There is justification for 
it with microarrays, but the high sensitivity of RNA-Seq data (and high abundance of 
zero values) invalidates its use for statistical cutoffs.  

Parsing DESeq results 

- For the first column, use an =IF statement with an “AND” function to check whether 
both (a) the Fold change value is greater than zero and (b) the P value is less than or 
equal to 0.01: 
 
 
 
 
 
 
 
- Repeat for the second column, but check if the fold change is less than zero for it. 
Then paste the two columns down, clear the formulas, and check for errors. 
- Paste the =COUNTIF formula from the secretion columns to count the differentially 
expressed genes. Note that this doesn’t match the RStudio summary because we are 
using a different threshold; At a 0.1 threshold, the counts do match.  
 
 
 
 
 
 
 
 
 

Parsing DESeq results 
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- Look at the most significantly differentially expressed genes by sorting by P value  
(A->Z), and then by one of the two categories (Z -> A): 
 
 
 
 
 
 
 
 
 
- Scroll to the left to see the the InterProScan annotation data, which gives information 
on the functions of these most significant genes: 
 
 
 

Analyzing data 

- For clustering, copy and paste the gene names and the FPKM values for each sample 
into a new spreadsheet, then save as a tab-delimited text file. Renaming the long 
sample names to shorter IDs will make the final cluster look nicer: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Saving data for clustering and functional enrichment testing 
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- For functional enrichment, we will need a “target” gene list of differentially expressed 
genes. In the interest of time, we will just save the “higher in early” gene list. Sort the 
spreadsheet by that column, then copy and paste all of the genes with “Y” values into a 
new file, then save as a tab delimited text with no headers: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Saving data for clustering and functional enrichment testing 

- Principal component analysis (PCA) is one approach for visualizing how expression 
patterns vary across samples.  
- Go back to R and find the PCA code section.  
- DESeq has a built-in tool for running PCA that utilizes the dds object created earlier. 
 
 
 
 
 
 
 
 
 
- These commands log transform the data, and then plot the PCA.    
- Note that “intgroup” can be any column of the metadata file. Here we use “stage” to 
give more detail on each sample, as opposed to just the two categories in 
“Comparison1”. 
- “ntop” defines the number of genes to use to calculate the PCA. Using too many low-
information genes may add noise to the clustering. The default is 500, but the results are 
generally not sensitive to changing the number. 
 
 
 
 

PCA from DESeq results 
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- After running these commands, the PCA plot will show up in the bottom-right panel. 
- Clicking “Export” will allow you save this file. If you save as a PDF, you can edit the plot 
directly in a vector-based image editing program (Adobe Illustrator, or “Inkscape”, which 
is free).  
- We will also export the plot  
co-ordinates so that the data  
can be replotted in Excel later.  

PCA from DESeq results 

- The following code will save the PCA coordinates into a file so that the data can be 
graphed in other programs, and outputs the variance of each component, including 
those not shown on the plot.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PCA from DESeq results 
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- PCA was calculated directly from the DEseq dataset, but we will use FPKM values for 
hierarchical clustering.  
- Run this code to load libraries and prepare the input files: 
 
 
 
 
 
 
 
 
 
 
 
- If there is an error, check that the file names match.  
- Next, we create a distance matrix. The statistic specified here determines the clustering 
algorithm. Pearson or Spearman correlation is typically used for RNA-Seq data, and 
“average” linkage is typically best for drawing the clusters:  

Hierarchical clustering in RStudio 

- The script includes two approaches for viewing the clustering: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- You can export one or both of these as PDF for future reference.  
- Finally, the script exports a newick-format file for input into other clustering programs 
(e.g. FigTree or ITOL): 

Hierarchical clustering in RStudio 
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- Run the following to prepare the GO database: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- “Go_to_geneID.txt” is a pairwise GO and Gene list, generated from InterProScan 
output in a different module.  
- Producing this file is the difficult part about running enrichment on a custom genome. 
Most tools (including GOSTATS) are designed to be easy to use primarily for model 
organisms.  

Functional enrichment using GOSTATS in RStudio 

- Here we will input the complete (background) T. suis gene set, and our shorter target 
gene set that we saved from Excel, based on the DESeq output:  
 
 
 
- The remaining code runs the enrichment test and produces output. It is ran three times, 
one for Biological Process (BP), one for Molecular Function (MF) and one for Cellular 
Component (CC) Gene Ontology terms. Run all of this code to produce the three output 
files: 
 
 
 
 
 

Functional enrichment using GOSTATS in RStudio 
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- Open the “GOSTATS_output_MF.txt” file in the GOSTATS folder (Using Excel). 
- As with DESeq output, shift the headers to the right by 1 column: 
 
 
 
 
 
 
 
- The list is sorted by P value, with the most significant terms at the top. However, these 
P values are not population-corrected, and this must be done manually for GOSTATS. 
- We need to do correction because there are multiple tests being performed. A 5% 
chance of being false is not acceptable when performing hundreds of tests.  
- Generally, FDR correction is preferred for multiple-testing because it is a reasonable 
balance of stringency. The most stringent approach is Bonferroni correction (multiplying 
P values by the number of tests). 
 
- For FDR, the most significant P value is multiplied by the number of tests. The second-
most significant P value is multiplied by the number of tests divided by two. The third-
most significant P value is multiple by the number of tests divided by three, etc.  
 
 

Manual False Discovery Rate (FDR) correction 

- This output file contains 314 tests. So the P values need to recalculated according to: 
 P value * ( 314 / [rank of P value] )  

- We can accomplish this using the =RANK formula in Excel:  
=RANK( [value], [range of all values], [0 = Largest first, 1 = Smallest First] ) 
 
 
 
 
 
- The formula shown will calculate FDR-corrected P values in column I. The threshold 
value (0.01) will be applied on these FDR values. 
- Some additional formatting will clean up the table and make it ready for publication: 
 
 
 

Manual False Discovery Rate (FDR) correction 
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- Excel is a very useful program for 
graphing data, since graphs are 
easily customizable and interactive.  
- We will go through the steps 
required to create a publication-
quality scatterplot image of the 
previously-generated differential 
gene expression data.  
- Note that within excel, graphs are 
called “charts”. Also note that Excel, 
particularly on Macs, can 
sometimes be prone to crashing 
when working with graphs. Be sure 
to save frequently.  
 
 
 
 
 
 
 
 
 

Graphing in Excel 

 
- The points in a graph on it will stay linked to the data you enter. So, if data in the sheet 
is re-sorted or changed, then the graph will automatically update. For this reason, we will 
start by moving the data to be graphed onto a new separate sheet, where it won’t be 
changed later: 

- Copy and paste gene names, and all of the DESeq data from the main data sheet into 
the new graph data sheet. 
- Delete the fold change and P value columns by selecting the entire columns (by 
clicking the letters on the border of the spreadsheet) and then right clicking and “delete”. 
This data is not required to construct the graph. 
- Add the sorting arrows, then sort the sheet by ‘higher in early’ and then ‘higher in late’, 
so that the three categories of differential expression are in blocks in the table: 
 
 
 
 
 
 
- Cut and paste this table into three sections: Higher in early, higher in late, and not 
differentially expressed. This isn’t strictly necessary to construct the graph, but it is 
helpful for organization. Copy and paste the headers to organize the data: 

Graphing in Excel 
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- We will start by graphing the “not differentially expressed” genes as an X-Y scatterplot. 
- Use Shift + command/CTRL to highlight the FPKM data down this entire column. Then, 
under “charts”, choose “scatter” and then “Marked scatter” (with no lines):  
 
 
 
 
 
 
 
- When you do this, Excel will generate a simple plot of the data, as an object on the 
sheet. Right click the empty white space on the plot, select “Move Chart”, and then 
specify a “new sheet” instead, so that it puts the chart on its own sheet: 
 
 
 
 
  

Graphing in Excel 

- The default chart is not formatted nicely, and may vary by version of Excel. 
- Note that the order of the following formatting steps doesn’t matter.  
- First, we will add axes labels. Under “chart layout”, select “axis titles”, and then click to 
add a title below the X axis and a rotated title on the Y axis: 
 
 
 
 
 
 
 
 
- Click on the axes titles to change the labels to something descriptive, usually with units 
in parentheses: 
 
 
- Next, click on empty white space in the corner of the sheet, to select the entire graph. 
This will allow you to set a global font without adjusting each component manually. Arial 
font is always acceptable for publication, so choose it, and choose size 16 font. This 
large font size is necessary because graphs are rarely printed as a full page, but instead 
are often shrunk into a single panel.  
 
  

Graphing in Excel 
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- Remove horizontal gridlines by clicking on one of them and pressing the “delete” key 
(backspace on windows). Double-click on the plot area and under “line”, choose black 
for the color instead of “automatic”. This will put a border around the plot.  
 
 
 
 
- We will now start to add the other two data series to  
the graph. 
- Right click on the plot area and then click “Select data”. 
 
 

Graphing in Excel 

Ignore this. 

A list of the different series of data on 
the graph. Each series can be 
formatted independently. 

The name of the selected series. If 
blank, it will default to numbering. 

Range of X values and range of Y 
values for the selected series. 

This only matters for graphs with 
categories (not numbers) on the x axis. 

- First, rename the existing series to “Not differentially expressed” (this is the data we 
started the graph with).  
- Click “add” to add a second series. Title the series (“Upregulated in late larval”), and 
then click the red arrow beside the “X values” to select the x axis values for this series. 
 
 
 
 
 
 
- Click back to the ‘FPKM GraphData’ tab, and highlight the X values (early larval) from 
the “Upregulated in late larval” columns you previously set up: 
 
 
 
 
 
 
 
- On windows, you can click on the first cell, and shift + CTRL down to select the entire 
column. This doesn’t always work in the Mac version (a bug), so you may need to  
either select with the mouse, or type in the range manually.  
 
 
 
 
 
 
 
 
 

Graphing in Excel 
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- Once the data is selected, press enter or press the red arrow to return to the main data 
selection menu. Repeat this process to select the Y values, and then add another series 
for the “Upregulated in early larval” data, and add those x and y values. 
- When all of this is finished, click “ok” to return to the graph.  
- Note that if an error pops up when entering data, it is probably because you clicked in 
multiple places, and it is expecting a single range of values. If this happens, delete 
everything in the white box, and then click the red arrow again.  
 
 
 
 
 
 
 
 
 
 
 
 
- Click OK to finish the data entry.  
 

Graphing in Excel 

- Resize and reposition the legend and the graph 
to reduce empty white space. 
- We will format the axes so that they display log 
values instead of natural values. Start by double-
clicking on any of the numbers on the x axis. 
- In the “scale” menu, check “Logarithmic scale”. 
You will get a warning that zero values cannot be 
displayed, which we will address shortly.  
- Set the “vertical axis crosses at” value to 0.001, 
so that the axes intersect on the corner.  
- Repeat both of these steps for the y-axis, 
except for the y axis, also set the “major unit” to 
100, so that it matches the X axis.  
 
- Although we do not need it for this graph, note 
that this menu is where you can manually set the 
minimum and maximum values for the plot. 
 
 
 
 
 
 
 
 
 
 
 
 
- No 

Graphing in Excel 
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- Next, we will format the data series points. Start by double clicking on one of the “not 
differentially expressed” points. Note that if you single-click, and then double-click, you 
will be formatting a single point and not the entire series. Ensure that the popup 
window says “format data series” and not “format data point”. 
- Go to “Marker style” and choose a circle, then set it to size 4. We make these points 
small because we want the differentially expressed genes to stand out. 
- Now choose “Marker line” and choose “no line”. This is for the border around each 
point which we don’t want for this series. 
- Go to “marker fill”, and set to black with 70% transparency. This will make the points 
translucent, making it easier to tell where they overlap. Click ok to finish formatting.  
- Repeat for the two upregulated gene sets, except choose a size 5 circle, a black 
marker line, and a solid fill with no transparency (orange and blue).  

Graphing in Excel 

- Now, we will fix the zero values. Rather than not including points with zero 
expression, we want them to show up along the axis. We will do this by changing all 
zero values in the graph data to 0.001.  
- Go back to the FPKM GraphData tab, and press “command/CTRL + F” to bring up 
the “Find” dialog. From here, click “replace”, and check off “find entire cells only”. Use 
this to replace all zero-value cells with 0.001. The graph will auto-update since the cell 
references are still linked. 
- Now, the points plotted along the axes  
are zero-value, and not 0.001 as  
indicated. This can either be mentioned 
in the figure caption, or the 0.001 values 
can later be covered up in imaging 
software and replaced with 0 on the plot.  
 
 
 
 
 
 
 
 
  

Graphing in Excel 
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- Finally, we will add a diagonal line to define where the x and y values are equal. To 
do this, go back to the “select data” menu (right click the empty space on the graph). 
- Now add another series called “Equal”. Manually type in the values 0.001,100000 to 
both the x and y axis values, then click OK. 
 
 
 
 
 
- Two points will show up in the corner. Double click one of them, then set the Marker 
style to “no marker”, the “line” color to dark grey, and then click to the “weights & 
arrows” dialog under the “line” menu. In that menu, set the weight to 2pt, and choose a 
dashed line: 
 
 

Graphing in Excel 

- If “equal” shows up in the legend, click it and delete it.  
- At this point, the graph is complete. This can be saved as a PDF file in the “save as” 
menu, and imported as a vector-format image into other software.   

Graphing in Excel 

- You can make a copy of the graph 
by right clicking the sheet tab at the 
bottom, and choosing “Move or 
Copy...”, and then specifying to 
create a copy. This way, if you make 
a second scatterplot, you can just 
change the series data, and keep 
all of the formatting.  
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Helpful resources for Section 2 

•  List of RNA-seq bioinformatics tools: 
•  https://en.wikipedia.org/wiki/List_of_RNA-Seq_bioinformatics_tools 

•  khmer website and blog 
•  http://khmer-protocols.readthedocs.org/en/v0.8.2/mrnaseq/index.html 
•  http://ivory.idyll.org/blog/category/science.html 

•  DESeq2 
•  https://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/

doc/DESeq2.pdf  
•  http://www.bioconductor.org/help/workflows/rnaseqGene/  

•  GOstats 
•  https://bioconductor.org/packages/release/bioc/vignettes/GOstats/inst/doc/

GOstatsHyperG.pdf 
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Section 3: Variome 
Module 0: Re-sequencing genomes 
!
 
Analysis of genetic variation is central to understanding population biology and 
molecular epidemiology of helminth parasites. Studying genome variations within and 
between populations can provide insights into geographical differentiation and gene flow, 
transmission patterns and evolution of parasites. In addition, genome-wide association 
studies (GWAS) and forward genetic screens (mapping-by-sequencing) can greatly 
facilitate identification of genetic variants correlated with phenotypes of biomedical 
interests (e.g., infection behavior, drug resistance, etc.) 
 
NGS provides an unprecedented opportunity to characterize genetic variation in large 
number of samples at a reasonable cost. Sequencing individuals at a high coverage is 
the 'gold standard' for obtaining high-quality data, but budget constraints may require 
alternatives for studying large populations. Reduced representation and pooled 
sequencing approaches can be cost-efficient, but it is important to understand the 
strengths and weaknesses of each method to strategically design your experiment. 
 
The following modules in this section will help you understand how we can turn raw 
sequencing data into reliable information about genetic variation. 
 
 
Recommended reading: 
 
DePristo, M. A., E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl, A. A. 
Philippakis, G. del Angel, M. A. Rivas, M. Hanna, A. McKenna, T. J. Fennell, A. M. 
Kernytsky, A. Y. Sivachenko, K. Cibulskis, S. B. Gabriel, D. Altshuler and M. J. Daly 
(2011). "A framework for variation discovery and genotyping using next-generation DNA 
sequencing data." Nat Genet 43(5): 491-498. 
 
Nielsen, R., J. S. Paul, A. Albrechtsen and Y. S. Song (2011). "Genotype and SNP 
calling from next-generation sequencing data." Nat Rev Genet 12(6): 443-451. 
 
Schlotterer, C., R. Tobler, R. Kofler and V. Nolte (2014). "Sequencing pools of 
individuals - mining genome-wide polymorphism data without big funding." Nat Rev 
Genet 15(11): 749-763. 
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Variome – introduction (cont’d) 

  
•  Not all mismatches are SNPs!  

  
 Errors in library preparation/basecalling/mapping etc.  

 
 
•  The basic idea behind finding probability of bases at a locus (genotype 

likelihoods) using Bayes theorem 

 P(A|B) = k X P(B|A) X P(A) 

genotype 

data 

Error model 

Prior on genotype 
(e.g. P(G)=0.3 if GC content is 60%) 

(or P(non-ref)=1e-4, if SNP rate is known to be 0.01%) 
(or… any other “prior” constraint you know about) 

Some SNP calling programs 

      published  citations 
 

 CRISP     2010    92 
 

 SNVer     2011    86 
 

 Samtools    2011    176 
 

 GATK     2011    >2000 
(Genome Analysis Tool Kit) 
 

 SomaticSniper   2012    128 
 

 Varscan-2    2012    404 
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Genome Analysis Tool Kit 

 Developed at The Broad Institute, Cambridge, MA  
 
 
Installation: download directly from GATK website 
 
 
Java Usage: a single jar file (except some preprocessing steps, which use bwa and 
picard tools) 
 
 
Help for anything related to GATK, available at GATK website (with Guide, tools 
documentation and best practices)  
 
Specifically, it is highly recommended to read the best practices before (or while) 
using GATK: 
https://www.broadinstitute.org/gatk/guide/best-practices 
 
The use forums  (http://gatkforums.broadinstitute.org/) are also great, with usually 
very prompt responses by the GATK team 

Before we start… 

 All figures in Module 1 and 2 are courtesy GATK online material (used here with 
permission) 
 
Our dataset : 4 samples from male D. viviparus worms 
 
 
We selected just 2 contigs for illustration (You will usually do this on the whole 
genomes of your worm of interest, so your SNP calling will take more than the 2 
hours we have here!) 
 
 
Starting data : 

  
 paired end reads in fastq format  
 (“Section_3/module_1/bwa/reads/S1_1.fastq” etc) 
  
 reference sequence and annotation  
 (fasta, bed and gff3 files in “Section_3/reference” directory) 
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About GATK: Overall flow 

Module 1 

Module 2 

Useful, but mostly feasible only 
with well studied model organisms 
So, we won’t be doing this here 

GATK Process map 
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Section 3: Variome 
Module 1: Processing and alignment 

Preparing reference file 
(You are here -> “Section_3/reference”) 

bwa index reference.fasta 
 
samtools faidx reference.fasta 
 
java -jar ~/bin/picard-tools-1.101/
CreateSequenceDictionary.jar R=reference.fasta 
O=reference.dict 

Mapping using bwamem 
(Section_3/module_1/bwa) 

Important information about reads is also encoded simultaneously (library name, 
sample name, read group etc). These are useful for analysis later. 

cd ../module_1/bwa 
 
for i in S1 S2 S3 S4;do bwa mem -t 8 -M -R "@RG
\tID:"$i"_RG1\tPL:illumina\tPU:"$i"_RG1_UNIT1\tLB:"$i"-
lib1\tSM:"$i ../../reference/reference.fasta 
reads/"$i"_1.fastq reads/"$i"_2.fastq >"$i".bwa.1.sam;done 

Preparing reference file and mapping 
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Duplicate reads 

 
Marking Duplicates 

For correct estimation of variant likelihoods, we need our reads to represent the 
correct proportions of molecules in the library. (actually we also want our library to 
represent the proportions of original biological sample, and should be wary of 
biases introduced by PCR etc, but right now let’s worry only about making sure 
we don’t sequence a molecule more than once). One way of doing this is finding 
out which sequences are highly likely to originate from the same DNA fragment, 
and then removing all but one of that set.  

Recognizing duplicates 

 
Marking Duplicates 

Finding reads that start at the same location. And, if paired end, that have 
their partners also mapping at the same starting location.  
 
We can’t simply compare the read sequences because sequencing is error 
prone and will likely lead to high underestimation of duplicates.  
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Removing Duplicates 

(Section_3/module_1/bwa) 

for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/picard.jar 
MarkDuplicates MAX_FILE_HANDLES_FOR_READ_ENDS_MAP=1000 
REMOVE_DUPLICATES=true INPUT="$i".bwa.sorted.bam 
OUTPUT="$i".dedup.bam METRICS_FILE="$i".dedup_metrics 
ASSUME_SORTED=true;done 

Sort and convert to bam 
 
for i in S1 S2 S3 S4;do  samtools view -bS "$i".bwa.sam | 
samtools sort - "$i".bwa.sorted;done 
 
 
Removing duplicates with Picard tools 

Then you can look at some examples of before-and-after deduplication reads/
alignment using “samtools faidx” and “samtools tview” (or IGV) 

Refining Alignments 

 
Read aligners like bwa etc look at every read independently and try to find the best 
alignment for every read. This may lead to spurious SNPs because of slightly “off 
target” mappings, especially in presence of small indels (e.g. left figure below). 
Realigning all such reads in this region simultaneously by making use of multiple 
sequence alignment algorithms leads to more concordant alignments. This gets rid of 
many false positive SNPs which are merely mapping artifacts (right figure below) 
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Realignment around indels 

 

(Section_3/module_1/bwa) 

Realign in these loci 
 
for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T IndelRealigner -R ~/WORKSHOP_RESOURCES/
Section_3/reference/reference.fasta -I "$i".dedup.bam  -
targetIntervals "$i".realignment.intervals -o 
"$i".dedup.realigned.bam;done 

Index our de-duplicated bam files 
 
for i in S1 S2 S3 S4;do samtools index "$i".dedup.bam;done 
 
Find intervals to analyze 
 
for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T RealignerTargetCreator -R ~/
WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -I 
"$i".dedup.bam -o "$i".realignment.intervals;done 
 

Base Recalibration (in presence of a truth set) 

Paired end Hiseq data 

To improve base quality values, mismatches with reference are analyzed. 
Assuming that any mismatch which isn’t a known SNP is an “error”, base qualities 
can be readjusted to more closely model the reality (removing systematic errors in 
original base quality reports). 
 
However, this can only be done in the presence of a substantial set of known True 
Positives (i.e. a large set of known SNPs). Since we don’t have that (yet), we’ll 
skip this and come back to it later… 
 
The figure below shows the result of recalibrating errors from original reported 
qualities to those obtained using mapping data (after filtering out known SNPs). 
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Section 3: Variome 
Module 2: Variant calling 

Introduction 

 

HaplotypeCaller is the workhorse of GATK’s variant calling process. It calls variants 
by assembling reads in “active regions” into haplotypes (completely independent of 
reference sequence mapping) and then estimating likelihoods of genotypes at 
variant loci based on how well each read represents those assembled haplotypes. 
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Running HaplotypeCaller 
(Section_3/module_2/haplo) 

for i in S1 S2 S3 S4;do  java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T HaplotypeCaller  -R ~/
WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -I 
"$i".dedup.realigned.bam -ERC GVCF -ploidy 2 -o 
"$i".dedup.g.vcf;done 

Prepare files 

cd ../../module_2 
mkdir haplo 
cd haplo 
 
for i in S1 S2 S3 S4;do ln -s ../../module_1/
bwa/"$i".dedup.realigned.bam;done 
 
for i in S1 S2 S3 S4;do ln -s ../../module_1/
bwa/"$i".dedup.realigned.bai;done 

Run HaplotypeCaller with GVCF 

Some default settings for HaplotypeCaller 

 
--maxReadsInRegionPerSample       10000 
 
--min_base_quality_score         10 
 
--minReadsPerAlignmentStart        10 
 
--sample_ploidy           2 
 
--standard_min_confidence_threshold_for_calling   30.0 
 
--standard_min_confidence_threshold_for_emitting   30.0 
 
--max_alternate_alleles         6 
 
--maxNumHaplotypesInPopulation       128 
 
 See Details at 

https://www.broadinstitute.org/gatk/gatkdocs/
org_broadinstitute_gatk_tools_walkers_haplotypecaller_HaplotypeCaller.php 
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The VCF file format 

Full details: https://samtools.github.io/hts-specs/
VCFv4.2.pdf 

##fileformat=VCFv4.1 
##ALT=<ID=NON_REF,Description="Represents any possible alternative allele at this location"> 
##FILTER=<ID=LowQual,Description="Low quality"> 
##FORMAT=<ID=AD,Number=.,Type=Integer,Description="Allelic depths for the ref and alt alleles in the order listed"> 
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth (reads with MQ=255 or with bad mates are 
filtered)”> 
##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for each ALT allele, in the same order as 
listed"> 
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency, for each ALT allele, in the same order as listed"> 
##contig=<ID=D_viviparus-1.0_Cont486,length=89705> 
##contig=<ID=D_viviparus-1.0_Cont375,length=119898> 
##reference=file:///home/ec2-user/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta 
#CHROM  POS  ID  REF  ALT  QUAL FILTER  INFO  FORMAT  S1  S2  S3  S4 
D_viviparus-1.0_Cont486  255  .  T  C  2156.88  .

 AC=2;AF=0.250;AN=8;DP=168;FS=0.000;MLEAC=2;MLEAF=0.250;MQ=60.00;QD=29.09;SOR=0.818
 GT:AD:DP:GQ:PGT:PID:PL  1/1:0,49:49:99:1|1:255_T_C:2197,147,0 0/0:35,0:35:99:.:.:0,99,1485
 0/0:39,0:39:99:.:.:0,102,1497  0/0:44,0:44:99:.:.:0,100,1742 

An example 

Using GVCFs to combine sample-wise variants 

 
##fileformat=VCFv4.1 
. 
. 
. 
##GVCFBlock0-1=minGQ=0(inclusive),maxGQ=1(exclusive) 
##GVCFBlock1-2=minGQ=1(inclusive),maxGQ=2(exclusive) 
. 
. 
. 
#CHROM  POS  ID  REF  ALT  QUAL FILTER

 INFO  FORMAT  S1  S2  S3  S4 
D_viviparus-1.0_Cont486  1  .  A  <NON_REF> .  .

 END=4  GT:DP:GQ:MIN_DP:PL  0/0:17:48:17:0,48,720 
D_viviparus-1.0_Cont486  5  .  T  <NON_REF> .  .

 END=5  GT:DP:GQ:MIN_DP:PL  0/0:18:31:18:0,31,669 
D_viviparus-1.0_Cont486  6  .  G  <NON_REF> .  .

 END=9  GT:DP:GQ:MIN_DP:PL  0/0:18:51:18:0,51,765 
. 
. 
. 

(Section_3/module_2/haplo) 
java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T GenotypeGVCFs -R 
~/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta $(for 
i in S1 S2 S3 S4;do echo -n "--variant "$i".dedup.g.vcf ";done) 
-o all_raw.vcf 
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Variant Quality recalibration for refinement 

 
To get a higher confidence set of real SNPs, we can look at a truth set (if we 
have one) of real SNPs and analyze what values various relevant metrics take 
for them. e.g. you may just pick up very rare (and potentially spurious) SNPs 
just because of very high depth of coverage. Looking at various metrics 
( Variant quality score/Depth, strand bias etc) may separate real SNPs with 
False Positives (figures below).  
 
So, first we calibrate using known SNPs, then use those calibrations to filter 
out potential False Positives and obtain a final analysis-ready variant set.  
 

Using hard filters 

 
However, last page is useless for us since we don’t actually have a truth set. 
 
We still want to set up a filter to refine our raw variant set. So, we’ll use some hard 
filters (i.e. thresholds pre-decided rather than dynamically calibrated based on data). 
We will use values recommended by GATK best practices, though these numbers 
can be changed based on any insight you may have into your specific case. 

 
QD      : Quality by Depth     < 2.0 
FS      : FisherStrand     > 60.0 
MQ     : RMS Mapping Quality   < 40.0 
MQRankSum    : Mapping Quality Rank Sum  < -12.5 
ReadPosRankSum   : Read Position Rank Sum   < -8.0 

In addition, we will also apply a depth of coverage filter (even though GATK team 
advises that it isn’t as critical with HaplotypeCaller as with its older and almost 
obsolete cousin “UnifiedGenotyper”). We just want high confidence SNPs to 
generate a raw “truth set”. So, we’ll apply a relatively strict Depth filter. GATK used to 
suggest Depth of Coverage (DP) > (mean+5*sd). 
 
We will use  DP > (median + 2*MAD) 
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Setting stage for filtering SNPs  

 
Collecting SNPs and getting coverage 

(Section_3/module_2/var_filt) 

Prepare Files 
 
cd .. 
mkdir var_filt 
cd var_filt/ 
ln -s ../haplo/all_raw.vcf 
 
 
Extract SNPs from the “raw” vcf file 
 
java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T 
SelectVariants  -R ~/WORKSHOP_RESOURCES/Section_3/
reference/reference.fasta -V all_raw.vcf -selectType SNP -
o raw_snps.vcf 

Getting DP filter threshold 

 
Collecting SNPs and getting coverage 

(Section_3/module_2/var_filt) 

Finding base-wise coverages over the reference contigs (in order to find the 
DP filter threshold) 
for i in S1 S2 S3 S4;do ln -s ../../module_1/
bwa/"$i".dedup.realigned.bam;done 
 
for i in S1 S2 S3 S4;do coverageBed -abam 
"$i".dedup.realigned.bam -b ../../reference/
reference.fasta.bed -d >"$i".coverage.bed;done 
 
We will find the median and MAD (median absolute deviation) in R. This is done after 
adding the depths over all the samples: 
 
S1<-read.table("S1.coverage.bed",header=F,stringsAsFactors=F) 
S2<-read.table("S2.coverage.bed",header=F,stringsAsFactors=F) 
S3<-read.table("S3.coverage.bed",header=F,stringsAsFactors=F) 
S4<-read.table("S4.coverage.bed",header=F,stringsAsFactors=F) 
sum<-S1$V6+S2$V6+S3$V6+S4$V6 
summary(sum[sum<=(median(sum)+(2*mad(sum)))]) 
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Applying SNP filters 

 
Since we are only using DP to get a strict set for the purpose of base recalibration, 
we are sloppy here and using bedtools coveragebed utility to get coverage (also, 
partly because we want to introduce you to the convenient and useful coveragebed 
utility). If you really want to get proper depth numbers to set your DP filter, you 
should use the DepthofCoverage tool of GATK itself (as it takes care of any base 
filters that are applied in GATK before counting depths). 
 
Also, remember that DP doesn’t need to be used with HaplotypeCaller, and we 
won’t use it to get our final SNP set anyway.  

Now, we can apply our SNP filter! 
java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T  
VariantFiltration -R ~/WORKSHOP_RESOURCES/Section_3/
reference/reference.fasta -V raw_snps.vcf -o 
raw_snps_filtered.vcf  --filterExpression " QD < 2.0 " --
filterName "QD"  --filterExpression " FS > 60.0 " --
filterName "FS" --filterExpression " MQ < 40.0 " --filterName 
"MQ" --filterExpression " MQRankSum < -12.5 " --filterName 
"MQRankSum" --filterExpression " ReadPosRankSum < -8.0 " --
filterName "ReadPosRankSum" --filterExpression " DP > 268 " 
--filterName "DP" 

Applying indel filters 

 
(Section_3/module_2/var_filt) 

Now, we’ll repeat filtering with indels too (using separate thresholds recommended by 
GATK best practices) 
 
 
java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T SelectVariants  
-R ~/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -V 
all_raw.vcf -selectType INDEL -o raw_indels.vcf 
 
 
java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T  
VariantFiltration -R ~/WORKSHOP_RESOURCES/Section_3/reference/
reference.fasta -V raw_indels.vcf -o raw_indels_filtered.vcf  
--filterExpression " QD < 2.0 " --filterName "QD"  --
filterExpression " FS > 200.0 " --filterName "FS" --
filterExpression " ReadPosRankSum < -20.0 " --filterName 
"ReadPosRankSum" 
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Combining variants 

 
(Section_3/module_2/var_filt) 

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T  
CombineVariants  -R ~/WORKSHOP_RESOURCES/Section_3/
reference/reference.fasta --variant raw_snps_filtered.vcf 
--variant raw_indels_filtered.vcf -o 
raw_combined_filtered.vcf -genotypeMergeOptions UNSORTED --
printComplexMerges 

We can now combine the SNPs and indels into a single variants file that 
can be used as a “truth set” to recalibrate bases (that we talked about in 
Module 1) 

Using Variant set for base quality recalibration 

Prepare Files, get recalibration data and apply it to update base quality 
values 

cd ../../module_1/bwa 
ln -s ../../module_2/var_filt/raw_combined_filtered.vcf 
 
for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T BaseRecalibrator  -R ~/
WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -I 
"$i".dedup.realigned.bam -knownSites raw_combined_filtered.vcf 
-o "$i".recal_data.table;done 
 
for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T PrintReads   -R ~/WORKSHOP_RESOURCES/
Section_3/reference/reference.fasta -I 
"$i".dedup.realigned.bam -BQSR "$i".recal_data.table -o 
"$i".recal_reads.bam;done 

(Section_3/module_1/bwa) 
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Variant Calling again 

cd ../../module_2/haplo 
 
for i in S1 S2 S3 S4;do ln -s ../../module_1/
bwa/"$i".recal_reads.bam;done 
for i in S1 S2 S3 S4;do ln -s ../../module_1/
bwa/"$i".recal_reads.bai;done 
 
for i in S1 S2 S3 S4;do  java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T HaplotypeCaller  -R ~/WORKSHOP_RESOURCES/
Section_3/reference/reference.fasta -I "$i".recal_reads.bam  -ERC 
GVCF -ploidy 2 -o "$i".recal.g.vcf -bamout 
"$i".recal.haplo.bam ;done 
 
java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T GenotypeGVCFs -R ~/
WORKSHOP_RESOURCES/Section_3/reference/reference.fasta $(for i in 
S1 S2 S3 S4;do echo -n "--variant "$i".recal.g.vcf ";done) -o 
all_recal.vcf 

With this presumably better set of base qualities, we’ll repeat our earlier steps for 
variant calling (i.e. haplotypecaller followed by combining the sample GVCFs) 

(Section_3/module_2/haplo) 

“-bamout” option is just to get a bam file which can then be visualized using IGV 
or “samtools tview” if you want to look at something closely.  

Final SNPs hard filtering 

cd ../var_filt/ 
ln -s ../haplo/all_recal.vcf 
 
java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T SelectVariants  -R 
~/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -V 
all_recal.vcf -selectType SNP -o recal_snps.vcf 
 
java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T  VariantFiltration 
-R ~/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -V 
recal_snps.vcf -o recal_snps_filtered.vcf  --filterExpression " QD 
< 2.0 " --filterName "QD"  --filterExpression " FS > 60.0 " --
filterName "FS" --filterExpression " MQ < 40.0 " --filterName "MQ" 
--filterExpression " MQRankSum < -12.5 " --filterName "MQRankSum" 
--filterExpression " ReadPosRankSum < -8.0 " --filterName 
"ReadPosRankSum” 

We will again filter the variants with the hard filters introduced before. While we 
will stop here for the demonstration, usually one wants to see some sort of 
convergence of results before stopping. So, if you see a significant change in the 
number of variants detected as compared to the last round, you can do the same 
cycle all over again (i.e. using SNPs to recalibrate bases followed by calling and 
filtering variants again) 

(Section_3/module_2/var_filt) 
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Final indel hard filtering 

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T SelectVariants  
-R ~/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta -V 
all_recal.vcf -selectType INDEL -o recal_indels.vcf 
 
java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T  
VariantFiltration -R ~/WORKSHOP_RESOURCES/Section_3/reference/
reference.fasta -V recal_indels.vcf -o 
recal_indels_filtered.vcf  --filterExpression " QD < 2.0 " --
filterName "QD"  --filterExpression " FS > 200.0 " --filterName 
"FS" --filterExpression " ReadPosRankSum < -20.0 " --filterName 
"ReadPosRankSum” 

We do apply hard filters for indels again. 

(Section_3/module_2/var_filt) 

Combining variants for further analysis 

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T  
CombineVariants  -R ~/WORKSHOP_RESOURCES/Section_3/reference/
reference.fasta --variant recal_snps_filtered.vcf --variant 
recal_indels_filtered.vcf -o recal_combined_filtered.vcf -
genotypeMergeOptions UNSORTED --printComplexMerges 

As said before, you should compare the change in variants after this round of 
recalibration and calling (but we will move on to Module 4 regardless of the 
change!) 

Combining SNPs and indels gives a common variant file which can be used for 
further analysis. In our case, we have a pre-generated file which will be used in 
Module 4 
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Section 3: Variome 
Module 2: Variant calling (cont’ ed) 
!
 
Visualization of variants 
Variants in VCF format can be visualized using the Integrative Genomics Viewer (IGV), a 
high-performance visualization tool for interactive exploration of large, integrated 
genomic datasets (http://www.broadinstitute.org/igv/). IGV supports a wide variety of 
data types, including next-generation sequence data and genomic annotations. 
 
Options for installing and running IGV 
(http://www.broadinstitute.org/software/igv/download) 
 
1. (Mac only) Download and run the Mac application; or 
2. (All systems) Use the Java Web Start buttons; or 
2. (All systems) Download the binary distribution and run IGV from the command line. 
 
Creating a .genome File 
1. Click Genomes>Create .genome File. IGV displays a window where you enter the 
information. 
2. Enter an ID and a descriptive name for the genome (e.g., D_viviparus). 
3. Enter the path to the FASTA file for the genome (reference.fasta). If the FASTA 
file has not already been indexed, an index will be created during the import process. 
This will generate a file with a ".fai" extension which must be in the same directory as the 
FASTA file.  
4. Specify the gene file (reference.gff3). 
5. Click Save. IGV displays the Genome Archive window. 
6. Select the directory in which to save the genome archive (*.genome) file and click 
Save. IGV saves the genome and loads it into IGV. 
 
Loading data 
1. Select File>Load from File. IGV displays the Select Files window. 
2. Select one or more data files or sample information files, then click OK. 
 
Please load the following files: 
 
recal_combined_filtered.vcf 
S1.recal.haplo.bam 
S1.dedup.realigned.bam 
 
 
!
Section 3: Variome 
Module 3: Variant annotation 
!
 
Using SnpEff (http://snpeff.sourceforge.net), we will annotate and predict the effects of 
variants on genes (such as amino acid changes). SnpEff is written in Java and runs on 
Unix/Linux, OSX and Windows. It accepts input files in VCF/BED format, and can 
provide consequence terms defined by the Sequence Ontology 
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(http://www.sequenceontology.org) and in HGVS notation 
(http://www.hgvs.org/mutnomen/). 
 
 
Building databases 
SnpEff needs a database to perform genomic annotations. In order to build a database 
for a new genome, you need to:  
 
1. Configure a new genome in SnpEff's config file. 
1a. Add genome entry to snpEff's configuration by editing the snpEff.config file. 
 
gedit ~/bin/snpEff/snpEff.config 
 
Add the following lines, save the file and exit gedit. 
 
# Dictyocaulus_viviparus 
D_viviparus.genome : Dictyocaulus_viviparus 
 
1b (optional). If the genome uses a non-standard codon table, add codon table 
parameter. Please see SnpEff documentation for detail 
(http://snpeff.sourceforge.net/SnpEff_manual.html). 
 
2. Create a directory for this new genome. 
 
mkdir ~/bin/snpEff/data/D_viviparus/ 
 
3. Get the reference genome sequence in FASTA format. 
 
ln -s ~/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta 
~/bin/snpEff/data/D_viviparus/sequences.fa 
 
4. Get genome annotations from GFF file. 
 
ln -s ~/WORKSHOP_RESOURCES/Section_3/reference/reference.gff3 
~/bin/snpEff/data/D_viviparus/genes.gff 
 
5. Build a SnpEff database. 
 
java -Xmx8g -jar ~/bin/snpEff.jar build -gff3 -v D_viviparus 
 
You can check the database to see if the features (genes, exons, UTRs, etc.) have been 
correctly incorporated, by taking a look at the database. 
 
java -Xmx8g -jar ~/bin/snpEff.jar dump D_viviparus | less 
 
 
Running SnpEff 
 
1. Change directory to where the SnpEff output files will be saved. 
 
cd ~/WORKSHOP_RESOURCES/Section_3/module_3 
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2. You can annotate the vcf file by running the following command. Command line option 
–v switches on the "verbose" mode, which can be useful for debugging. 
 
java -Xmx8g -jar ~/bin/snpEff.jar -v D_viviparus 
~/WORKSHOP_RESOURCES/Section_3/module_2/var_filt/recal_combined_f
iltered.vcf > recal_combined_filtered.eff.vcf 
 
SnpEff adds annotation information (‘ANN’ tag) to the INFO field of a VCF file. The INFO 
field is the eighth column of a VCF file. SnpEff updates the header of the VCF file to add 
the command line options used to annotate the file as well as SnpEff's version, so you 
can keep track of what exactly was done. 
 
less recal_combined_filtered.eff.vcf 
 
 
3. SnpEff creates an additional output file showing overall statistics. This "stats" file is an 
HTML file, which can be opened using a web browser. 
 
chrome snpEff_summary.html 
 
4. SnpEff also generates a (tab separated) TXT file having counts of number of variants 
affecting each transcript and gene. 
 
head snpEff_genes.txt 
 
 
Filter and manipulate annotated VCF files using SnpSift 
 
1. Once your genomic variants have been annotated, you need to filter them out in order 
to find the "interesting/relevant variants". SnpSift helps to perform this VCF file 
manipulation and filtering. It can be used to extract fields from a VCF file to a tab 
separated TXT format that you can easily load in R, Excel, etc. 
 
cat recal_combined_filtered.eff.vcf | 
~/bin/snpEff/scripts/vcfEffOnePerLine.pl | java -Xmx8g -jar 
~/bin/SnpSift.jar extractFields - CHROM POS REF ALT AF 
"ANN[*].ALLELE" "ANN[*].EFFECT" "ANN[*].IMPACT" "ANN[*].GENE" 
"ANN[*].HGVS_C" "ANN[*].HGVS_P" > recal_combined_filtered.eff.txt 
 
head recal_combined_filtered.eff.txt 
 
 
2. You can now easily list, for instance, the coding variants identified in your genes of 
interest (e.g., DICVIV_10165 and DICVIV_11294) 
 
cat recal_combined_filtered.eff.txt | grep -v "MODIFIER" | grep -
E "DICVIV_10165|DICVIV_11294" 
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Section 4: Final topics 
Module 0: Finding sequence resources 
!
 
If you’re looking for genomic sequence data, two of the best public resources available to you 
are the Ensembl websites and NCBI’s GenBank.  Ensembl maintains a collection of  websites 
organized by higher order taxonomy: Ensembl, Ensembl Metazoa, Ensembl Bacteria, Ensembl 
Protists, Ensembl Fungi, Ensembl Plants, etc…  while GenBank’s website is a single entity.  
Both provide the ability to locate and download genome sequence and annotation.  For most of 
your data needs these two sites will be your go-to resources 
 
For Helminth specific data, your best bet will be one of the more specialized websites such as 
WormBase, WormBase Parasite, and our own Helminth.net websites (Nematode.net & 
Trematode.net).   For genomic sequence data and gene annotation, the WormBase sites are 
very well organized and have a lot of worm data available. For worm model organisms such as 
C.elegans, the original WormBase maintains a trove of curated annotation.  WormBase Parasite 
maintains a broad collection of genomic sequence and gene annotation on most of the currently 
studied parasitic helminthes.   And the Helminth.net sites are a good source for finding higher 
order analysis and annotation. 
 
Useful Information: 
(Ensembl) http://useast.ensembl.org/index.html?redirect=no 
(Ensembl Metazoa) http://metazoa.ensembl.org/index.html 
(NCBI GenBank) http://www.ncbi.nlm.nih.gov/genbank/ 
(NCBI SRA) http://www.ncbi.nlm.nih.gov/sra 
(Helminth.net) http://helminth.net 
(WormBase Parasite) http://parasite.wormbase.org/index.html 
(WormBase) http://www.wormbase.org 
 
 
 
Section 4: Final topics 
Module 1: Bioinformatics packages 
!
 
By now you’ve probably realized that many of the workhorse tasks used by computational 
biologists already have publicly available, robust solutions. The links provided below take you to 
documentation for some of the packages we find most useful.   When faced with a new analysis 
task, scan the overviews of these packages, google search, or just ask around. You’ll often find 
that some imposing problem you are faced with has a very simple, packaged tool already 
available! 
 
One resource of special note is the Galaxy platform.   It’s a web-based platform for developing 
and running bioinformatics workflows. While not appropriate for large scale processing of data, 
for most projects involving just a handful of samples it works very well. The Galaxy project itself 
developed the Galaxy platform, and their intent is for other labs to take their software and setup 
their own resources for others to use.  But the developers themselves maintain a fantastically 
full featured Galaxy site themselves!    
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Useful Information: 
(samtools) http://samtools.sourceforge.net 
(picard) http://broadinstitute.github.io/picard/ 
(bedtools) http://bedtools.readthedocs.org/en/latest/ 
(bamtools) https://github.com/pezmaster31/bamtools/wiki/Using-the-toolkit 
(list of RNA-Seq bioinformatics tools) https://en.wikipedia.org/wiki/List_of_RNA-
Seq_bioinformatics_tools 
(Galaxy) https://usegalaxy.org 
!
 
 
Section 4: Final topics 
Module 2: Sources of help for bioinformaticians 
!
 
Good places to turn if you need bioinformatics help are: 
 

1) SeqAnswers – bioinformatics forum 
2) Biostars forum 
3) Google! 

 
Useful information: 
(SeqAnswers – bioinformatics forum) http://seqanswers.com/forums/forumdisplay.php?f=18 
(Biostars forum) https://www.biostars.org 
!
 
 
 
Section 4: Final topics 
Module 3: Open discussion 
!
 
Open discussion and specific questions. 
!
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