3 Washington University in St Louis

SCHOOL OF MEDICINE MCDONNELL GENOME INSTITUTE

ematode.net

A=l B @

SiteMap

nction Comparative Microbiome
n Genomics Interaction

Bioinformatics Workshop for
Helminth Genomics

September 10-11, 2015

Sponsors:

BURROUGHS g,
WELLCOME - NEW ENGLAND

FUND= BioLabs;.": amazon

The Elizabeth H. and James S. McDonnell lll Genome Institute, Washington University, Campus Box 8501
4444 Forest Park Blvd., Saint Louis, MO 63108 Phone: 314.286.1800 Fax: 314.286.1810 Web: genome.wustl.edu


- 1 -


Washington University in St.Louis
SCHOOL OF MEDICINE MCDONNELL GENOME INSTITUTE

Table of contents — Curriculum

September 10, 2015

Section 0: Cloud Computing

Module 0 — Introduction to cloud computing using Amazon’s AWS........................ 5

Section 1: Genome

Module 1 — Sequencing platforms..................... 8
= Common sequencing platforms
= Choosing appropriate sequencing platform
=  Sequencer output(s)
= QC sequence output

Module 2 — Sequence datafiles.................. 11
= Common sequencing file formats
=  Convert between formats

Module 3 — Analytical processing of sequences....................c.coiiiiiiiiiiiininn, 14
= Learn how to process genomic data to a cleaned state, ready for analysis

Module 4 — Genome assembly................ 20
= De novo genome assembly
= Assembly improvement
= QC de novo assemblies

Module 5 — Genome annotation..................... i 23
» |dentify & mask repeats in an assembly
= De novo gene calling
= Assess gene annotations
= Improve gene annotations
=  Common genome annotation formats
Module 6 — Functional annotation.......................... 29
= Assign basic functional annotation to predicted genes
= Similarity search on custom databases
= Common resources used for functional annotation


- 2 -


Washington University in St.Louis
SCHOOL OF MEDICINE MCDONNELL GENOME INSTITUTE

Section 2: Transcriptome

Module 0 — RNA isolation to sequence production....................................... 33
= RNAseq data production, RNA isolation to sequencing
= Analytical processing of RNAseq data to a cleaned state, ready for analysis

Module 1 — Genome based RNA-seq analyses.................coooiiiiiiiiiiinnes 44
= Align RNAseq data to a genome assembly
» Visualizing alignments

Module 2 — De novo transcript assembly..................... 48
= Read normalization
= De novo transcript assembly
» Quality filtering of assembled transcripts

September 11, 2015

Module 3 — Expression and differential expression............................. 54
= Experimental design (biological replicates, time courses, stages, tissues, etc.)
= PCA and hierarchical clustering
* Analyze differential expression
= Measure, interpret and visualize expression in MS Excel
= Organize and mine a database of gene annotation
= Functional enrichment of differentially expressed genes

Section 3: Variome

Module 0 — Re-SequenCing geNOMIES. ..........o.ouiiiitiiit i 91
= Re-sequencing genomes

Module 1 — Processing and alignment....................... 95
= Analytical processing and alignment of reads
= Refining alignments for variant calling

Module 2 — Variant calling...............oo i 99
= Basics of variant calling & how to filter for high quality loci
= Visualization of variants

Module 3 —Variant annotation.................oo 108
= Variant annotation
= Annotation interpretation


- 3 -


Washington University in St.Louis
SCHOOL OF MEDICINE MCDONNELL GENOME INSTITUTE

Section 4: Final topics

Module 0 — Finding SEqUENCE reSOUICES............ooeiuiiiiiiiie i aeenan 111
= | ocate and download annotated references
* Finding Helminth resources

Module 1 — Bioinformatics packages..................oooiiiiiiii 111
= Popular Bioinformatics toolsets
= Galaxy platform for running bioinformatics workflows

Module 2 — Sources of help for bioinformaticians...................................... 112
=  Get help with bioinformatics problems

Module 3 — 0Open diSCUSSION........ ..ot 112
» Questions & Answers

Workshop organizer and facilitator:

Makedonka Mitreva, PhD
Associate Professor of Medicine @ Washington University School of Medicine

http://genome.wustl.edu/people/individual/makedonka-mitreva/

Workshop instructors (Mitreva lab):
Section 1:

John Martin

Philip Ozersky

Section 2:

Samantha McNulty, PhD

Bruce A. Rosa, PhD

Section 3:

Young-Jun Choi, PhD

Rahul Tyagi, PhD


- 4 -


Section 0: Cloud Computing
Module 0: Introduction to cloud computing using Amazon’s AWS

Introduction

This document contains command lines & information that will be helpful to you during the
workshop. Think of it as CliffsNotes for the material being presented. It will be helpful to have
this document open electronically while following along with the demonstrations for copy-pasting
the command lines.

Command lines will beprinted in a distinctive font to make them stand
out from other text.

In this module you will learn the basics of cloud computing, and a little bit about how we’ll be
taking advantage of Amazon’s AWS. You'll connect to your EC2 instance and we’ll show you
have to transfer files to and from the EC2 instance. Finally we’ll download some files that will be
needed during later parts of the class.

Cloud computing

This phrase refers to the use of remote hardware resources (CPU, memory, disk space, etc...)
from a local platform (your laptop, a lab workstation, a desktop in your home, etc...). Cloud
computing enables users with limited local resources to have access to powerful computer
hardware, and only pay for the resources they actually consume. Some examples of
commercially available cloud computing services are Amazon’s AWS, Google’s Compute
Engine, Microsoft's Azure & IBM’s Bluemix.

Virtual Machines

A Virtual Machine (VM) is a software emulation of a computer running an operating system.
Because the processes occurring within a VM are entirely software, it's possible to ‘save’ a
virtual machine’s current state by taking a ‘snapshot’ of the running software and saving it to
disk.

That snapshot is called an ‘image’ of the running VM. This image can then be restarted at a
later time to restore the exact state of the original VM. lts possible to launch multiple copies of
an image, creating many ‘instances’ of that parent image, all running in the same state as the
original VM when the snapshot was taken.

< Saved VM with Workshop image and student instances
Image all software and ;
data files loaded CPUs | { Disks To prepare for this workshop we launched a

VM on the Amazon EC2 service. We
started with a pre-built image from Amazon
Copy o | that had Red Hat Enterprise Linux 7.1

g ance already installed. We launched one
' instance of that basic starting image on the

cloud and then loaded all the software and

nege |VM data files we wanted to provide for the
y l R course. Once everything was loaded and
I tested we took a snapshot and saved it as
I I l our workshop image. Before the workshop
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starts on day 1, we’ll be launching one instance for each attending student. Each student will
then log into their own working instance in which they will follow along with the demonstrations
we’ll be showing.

Connecting to a running EC2 instance

Here is how to connect to your personal EC2 instance. You should have received an email from
which you can find your specific instance address. You should also have received the public key
file as an attachment to that email. You’ll need to save the key to your laptop and remember its
location. We suggest creating a WORKSHOP folder on your laptop’s desktop, and then saving
the key in that location. There will be several parts of the workshop that will involve
downloading data and running tools locally, on your laptop. For convenience we suggest
keeping all workshop related files inside this WORKSHOP folder on your desktop.

Launch your terminal program (MAC users can use ‘Terminal’, and WIN users can use
MobaXTerm). Then from inside that terminal run these commands

0.0.1 (MAC): cd /Users/<your username>/Desktop
0.0.1 (WIN): cd /home/mobaxterm/Desktop

0.0.2: mkdir WORKSHOP

0.0.3: cd WORKSHOP

Save the PublicKey150713.pem file into this location now, then back in the terminal, change the
permission on the public key file

0.0.4: chmod 400 PublicKeyl50713.pem

0.0.5: ssh -YC -c blowfish-cbc,arcfour —-i PublicKeyl50713.pem ec2-
user@<instance address>

*note: Replace “<instance address>” with your personal instance
address that was emailed to you

A special note for laptop users without access to mouse buttons, which will be needed to copy-
paste commands for many of the demonstrations. Here is how to enable ‘three button mouse’
clicking on a Mac

0.0.6 (MAC): pull XQuartz to the front
0.0.7 (MAC): Open the X11 menu and select ‘Preferences’
0.0.8 (MAC): Check the ‘Emulate three button mouse’ box

For Windows users, here is how to enable copy-paste via the right-click menu

.6 (WIN): Select ‘configuration’ from the settings menu
.7 (WIN): Select the X11 tab

.8 (WIN): Set the Clipboard setting to ‘enabled’

note: This will either be a drop menu or a checkbox for ‘Shared
clipboard’ that you need to check
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Uploading and Downloading from an EC2 instance

Here is how to copy files from your laptop to the EC2 instance

scp -1 <path to public key> <file on laptop> ec2-user@<instance
address>:<path to destination on EC2>

And here is how to copy files from the EC2 instance to your laptop

scp -1 <path to public key> ec2-user@<instance address>:<path to file
on EC2> <path to destination on laptop>

You can also use scp to copy entire directories and their contents using the —r (recursive)
argument:

scp —-r -1 <path to public key> ec2-user@<instance address>:<path to
directory on EC2> <path to destination on laptop>

We have a couple of compressed tar files containing data files & resources you'll need for later
sections of this class that need to be downloaded to your laptop. First open a 2™ terminal
window on your laptop, because we conveniently have the full address of the EC2 instance, its
easiest to do these copies while sitting on the laptop side of the cloud

0.0.9 (MAC): cd /Users/<your username>/Desktop/WORKSHOP
0.0.9 (WIN): cd /home/mobaxterm/Desktop/WORKSHOP
Then use scp to download the wanted data files

0.0.10: scp -I PublicKeyl50713.pem ec2-
user@<instance address>:~/WORKSHOP RESOURCES/SECTION 2.tgz
0.0.11: scp -I PublicKeyl50713.pem ec2-
user@<instance address>:~/WORKSHOP RESOURCES/SECTION 3.tgz

Useful information:
(Amazon’s documentation on EC2) https://aws.amazon.com/ec2/



- 7 -


Section 1: Genome
Module 1: Sequencing platforms

In this module, we’ll introduce you to several of the sequencing platforms in use at our center
and we’ll look into what makes these systems unique, and what traits may be important to you
when you are deciding which platform(s) to use for your project. We'll also talk about the
specific case of the data we’ll be using during the genomic section of this workshop. We’'ll
describe the format in which it comes off the sequencing machine, and we’ll look at one method
we use for assessing the quality of raw data.

lllumina sequence-by-synthesis

The lllumina sequencers primarily use a sequence-by-synthesis approach, using fluorescently
labeled reversible-terminator nucleotides on clonally amplified DNA templates that are
immobilized on an acrylamide coating on the surface of a glass flowcell. As nucleotides are
incorporated onto the growing molecule attached to the flowcell, they release pulses of light that
are captured by the sequencer and processed to derive base sequence.
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Pacific Biosciences (PacBio) sequencing

PacBio’s sequencing method is dubbed Single Molecule Real Time (SMRT) sequencing. DNA
polymerase molecules, bound to a dna template, are attached to the bottom of 50nm wells
termed Zero-Mode Waveguides (ZMWs). Each ZMW is small enough to see a single nucleotide
being incorporated by the bound polymerase. Each of the four bases is attached to a unique
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fluorescent dye, and when a nucleotide is incorporated the fluorescent tag is released and
diffuses away from the observable area in the ZMW. A detector watches these fluorescent
signals are records the fluorescence to determine the base incorporated. These fluorescences
and their intensity are recorded over time, and these kinetics are used to calculate the base
sequence.
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Comparing capabilities
Each of these systems brings unique strengths to the table, and careful thought should go into
your choice of sequencing platform for any given project.

For example, the lllumina platform (HiSeq2500 1T) is good for de novo genome sequencing if
large insert size libraries used to facilitate scaffolding. However, in case of highly repetitive
genomes, polymorphic genomes, or sequencing a population of individuals, the short lllumina
reads would not provide optimal results. In such cases, one would need to use long read
sequencing platforms such as the PacBio sequencers, and generate de novo PacBio assembly
or hybrid lllumina/PacBio assembly. lllumina platforms are suitable for cost-effective re-
sequencing of isolates if a reference genome is already available and the rapid run of
HiSeq2500 (27hrs vs 6 days) or MiSeq (21 days) could be used (depending on the amount of
sequence data needed to be generated) as a time-efficient platform.

Data used in ‘Section 1: Genome’

The data we’ll be using for the genomic section of the workshop is from the pig whipworm
Trichuris suis which was chosen for its relatively small size compared to other worm genomes
(~80Mb). For expediency’s sake, some of the demonstrations will only use a subset of the full
dataset that would normally be involved in the genomic analysis of a standard helminth. We’'ll
also fast-forward through some of the lengthier steps and simply move to finished data after
showing you how to start the programs involved in each step.



- 9 -


Getting data off the sequencing machine

Our T. suis data was sequenced on a HiSeq 2000 machine. That machine (as with all lllumina
platforms) first generates sequence data in a format called ‘Bcl'. Bcl is a binary format that
contains base calls and quality scores, but is only machine readable and not anything a typical
user will interact with directly. lllumina’s Real-Time Analysis (RTA) software calls and records
the series of cycle-specific cluster images per spot on the flowcell and converts that image data
into bases and quality values in the Bcl file. It then converts that Bcl file into paired end fastq
format using another lllumina program called ‘bcl2fastq’. These paired-end fastq files are the
starting point for our analysis.

An introduction to the Fastq format
While we plan to cover the common sequencing data formats in module 2 of this section, its
useful at this point to introduce the fastq data format.

Fastq is a plain-text-based file format that contains exactly four lines per sequence record. It
starts with a header line, followed by the nucleotide sequence. Then is typically a line containing
a plus sign (+), and finally a line containing encoded quality values:

@K5HV3:00029:00029
AAAAAGGGTAAAAACGATCGTCACAGG
+

AB>>(44%44;;:/:447444C7657?@-

The sequence and quality lines must be of the same length (i.e. one quality value per base),
and the third line (beginning with a ‘+’) is allowed to contain test (sometimes you may see this
third line repeat the sequence header line after the starting plus sign). The quality values in line
4 are encoded such that each numeric value can be represented by a single character. This
coding involves converting these quality scores to ascii characters.

Fastq files only support nucleotide sequence data, the format is not meant to house amino acid
sequence. ‘Paired end’ fastq usually refers to a set of two fastq files with each file containing the
sequencing data for each end of each read fragment. Very importantly, these ends must be
ordered identically. There is an alternate form of paired end fastq in which the sequence of each
end of the read fragment are kept one after the other within a single fastq file. This format is
called ‘interleaved’ fastq.

Assessing the quality of newly generated fastq

We’'ll use the program FastQC to check out the quality of the paired end fastq we’ll be using for
the next few modules of this section. The FastQC program works on fastq files (as well as sam
and bam files, which we’ll discuss in the next module) and runs a number of quality control
metrics we can use to assess sequencing data. Its important to remember that while FastQC
uses hard, fast rules to determine when to flag a quality metric with a warning or fail notice,
those warning and fail notices do NOT always mean your data is bad. A simple example of this
is if you have sequence data from a polyA primed sequencing library, FastQC will likely throw
up a fail flag for Kmer Content and possibly for Overrepresented Sequences because many
reads will have strings of the base ‘A’. You need to review FastQC results thoughtfully and with
awareness of the data you are checking.

Here is how to run FastQC:

1.1.1: cd ~/WORKSHOP RESOURCES/Section 1/module 1/QC sequence output
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1.1.2: mkdir FASTQC OUTPUT

1.1.3: fastgc —-o FASTQC OUTPUT -extract -f fastqg raw data/6p 7kb TSAC-
Adultl-g846 g847.1l.raw.fastqg.gz raw data/6ép 7kb TSAC-Adultl-

g846 g847.2.raw.fastqg.gz

Here is how to view the results

1.1.4: chrome FASTQC OUTPUT/6p 7kb TSAC-Adultl-
g846 g847.1.raw.fastg.gz/fastqgc report.html
1.1.5: chrome FASTQC OUTPUT/6p 7kb TSAC-Adultl-
g846 g847.2.raw.fastqg.gz/fastqgc report.html

Useful information:

(IUPAC code) http://www.bioinformatics.org/sms/iupac.html

(lumina HiSeq 2000 information)
http://www.illumina.com/documents/products/datasheets/datasheet hiseq2000.pdf
(lumina MiSeq information)
http://www.illumina.com/documents/products/datasheets/datasheet miseq.pdf
(PacBio RS Il information) http://www.pacificbiosciences.com/products/

(FastQC) http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Section 1: Genome
Module 2: Sequence data files

This module will be a review of the common formats used to store sequencing data. We'll look
at: fasta, fastq, sam & bam. You will also be introduced to the Picard & Fastx toolkits and shown
how to convert between these formats.

Fastq
We've already discussed the fastq data format above. Just as a reminder, this is a four-line-per-

sequence-record, nucleotide-only data format that provides both base sequence as well as
quality in a single file. Commonly this format will house paired-end data, with the read from each
end of the DNA fragments housed in separate, paired fastq files.

Fasta

One of the most common sequence formats out there, fasta files, are simple text files with each
sequence record represented by a header line, and then a variable number of lines containing
the sequence data itself. The header lines must begin with the greater-than symbol (>), and
after that the line is relatively free-form. Be aware that many programs will only recognize the
first white-space delimited word on the header and use that as the identifier for that sequence.
For this reason, you will often find the sequence IDs as the first string on these header lines.
The sequence section of the fasta format is free-form. Sequence data is often listed using a
fixed number of bases per line, but its completely valid to put an entire genome’s worth of
sequence on a single line. Some older fasta files used to split the sequence lines with a blank
every 10 characters to help make longer sequences more human-readable. You can’t make
many assumptions about the specific format you will see inside a fasta file. The only safe
assumption is that every sequence record will be separated by a header line:
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>@i|5524378|gb|AAD44166.1| Cytochrome b [Elephas maximus maximus]
ATGATGATGATGATGATGAAGACAAGGTGAGCCTAAGTAAAACTATCAAA
CGACGTCAATCAATACTTCTGTGAGGTGCGTTACGTAATCAATCAAGCAA
TAATATGATAGAGGTGGATCAAAACGATTTCAAATTGCGCTAACAAAGAG
TTAATGCTTCTTCTTATCCT

The fasta format is valid for both nucleotide and protein data.

Sam (and Bam)

The sam format (Sequence Alignment/Map) is an information rich data format for hosting
nucleotide (-only) base and quality values. This format also supports the storage of alignment
information, but can be used as a simple sequence data format as well. The sam format
consists of 11 tab-delimited columns per sequence record (or several lines worth of 11 columns
for sequence alignment data in which the same sequence maps to multiple things), as well as a
number of header lines. For sequence only sam files (no alignments), there will usually be very
few header lines, but for sam files hosting alignment information, there will be at least one
header line per reference used in the mapping. These alignment sam files tend to have many of
these header lines, so it may be useful view the sam file without the headers (I'll show you how
to do this in a bit).

The columns in a sam file are setup to contain a lot of information:

Col Field Type Regexp/Range Brief description

1 QNAME String [!-7A-"1{1,254} Query template NAME
2 FLAG Int [0,2'%-1] bitwise FLAG
3 RNAME String \*|['-OQ+-<>-"1[!1-"1* Reference sequence NAME
4 POS Int [0,23-1] 1-based leftmost mapping POSition
5 MAPQ Int [0,2%-1] MAPping Quality
6 CIGAR String  \*| ([0-9]+[MIDNSHPX=])+ CIGAR string
7 RNEXT  String \*|=|[!-Q+-<>-"]1[!1-"1* Ref. name of the mate/next read
8 PNEXT Int [0,23*-1] Position of the mate/next read
9 TLEN Int [-231+1,231-1] observed Template LENgth

10 SEQ String  \x| [A-Za-z=.]+ segment SEQuence

11  QUAL String [!-"1+ ASCII of Phred-scaled base QUALity+33

Much of this complexity is in place to support the storage of alignment information. If you are
dealing with sam as a format solely for hosting sequence data, the important columns are the
QNAME, SEQ and QUAL columns (columns 1, 10 and 11 respectively).

The bam file format is often mentioned interchangeably with the sam file format. A bam file is
simply the binary (compressed) version of a sam file. It is convenient to keep sam files in their
compressed bam format to save space. In fact, many programs prefer bam as input over sam
files. The samtools package provides a number of convenient tools for manipulating sam and
bam files.

Converting between formats
Here is how to view the contents of a bam file (with headers):

samtools view —-h <bam>
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Here is how to view it without headers:

samtools view <bam>

Here is how to convert a sam file into a bam file:

samtools view -bSh -o <bam output> <sam input>

Here is how to convert a bam file back into sam:

samtools view —-h <input bam> > <output sam>

Next, we’ll practice some ways to convert between fastq, fasta and sam/bam using the Picard
and Fastx bioinformatics toolsets. First, we’ll create a sorted bam file from a set of paired end
fastq files using the Picard toolset

1.2.1: cd

~/WORKSHOP RESOURCES/Section 1/module 2/Convert between formats
1.2.2: java -jar ~/bin/picard.jar FastqgToSam Fl=raw data/6ép 7kb TSAC-
Adultl-g846 g847.1l.raw.fastqg.gz F2=raw data/6p 7kb TSAC-Adultl-

g846 g847.2.raw.fastqg.gz SAMPLE NAME=6p 7kb TSAC-Adultl-g846 g847
SORT ORDER=queryname OUTPUT=6p 7kb TSAC-Adultl-

g846 g847.PE.name sorted.bam

Here we introduce the idea of the ‘sorted’ bam file. A sorted bam file is simply a bam file that
has been sorted either by ‘name order’ or by ‘coordinate order’. Coordinate order sorting is
meant for alignment bam files. It re-orders the sequence records within the bam file based on
their alignment positions to each reference piece, with the references themselves being ordered
alphabetically. Note that if you coordinate sort a bam file that is not aligned, it will work but the
ordering will not be correct. Name ordering is the only valid ordering for alignment-free bam
files, and it simply orders the sequences based on their names.

Here is how to extract paired end fastq from a bam file:

1.2.3: java -jar ~/bin/picard.jar SamToFastqg INPUT=6p 7kb TSAC-Adultl-
g846 _g847.PE.name_sorted.bam F=6p 7kb TSAC-Adultl-

g846 g847.endl.new fastqg F2=6p 7kb TSAC-Adultl-

g846 g847.end2.new fastqg

Here is how to extract fasta from fastq using the Fastx toolset:

1.2.4: fastg to fasta -i 6p 7kb TSAC-Adultl-g846 g847.endl.new fastg -
o 6p T7kb TSAC-Adultl-g846 g847.endl.new fasta

Useful information:

(Bam/Sam specification) https.//samtools.github.io/hts-specs/SAMv1.pdf

(Picard Tools) http://broadinstitute.github.io/picard/command-line-overview.html#Overview
(Fastx toolkit) http://hannonlab.cshl.edu/fastx_toolkit/
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Section 1: Genome
Module 3: Analytical processing of sequences

In this module, we’ll demonstrate typical steps involved in processing raw sequence data from
the HiSeq 2000 platform to an analysis-ready state for assembly. This tutorial will be done on a
subset of the T. suis data that will be used in the full assembly. In a real world usage case you’d
most likely be running this process on multiple pairs of fastq files.

Why data is not analysis-ready directly off the sequencing machine
Raw sequence-data from a sequencing machine is technically capable of being used directly in
most downstream analyses, but there are a number if factors that make that very ill advised.

Sequencing adapters

To prepare DNA material for sequencing, a sequencing library must be made. In our example
case, we used the TruSeq genomic library preparation kit for the HiSeq 2000. The DNA sample
is first fragmented into pieces roughly 200bp in length. Then TruSeq universal adapters and a
specific version of the TruSeq index adapter are ligated onto each end of the fragments via a
single base (A) overhang.

The adapter—DNA fragment
P5 complex is then denatured and
N : amplified to produce a final
Rd1SP E product containing the DNA
Index /" Ra3 SP (P N 5 insert, end-specific sequencing
primers on either end, as well as
P7 a specific index for use in
identifying this library out of a
J pool of libraries.
\p5 g These TruSeq sequence
Rd1 SP Rd2 SP / adapters are normally not visible
Index . .
Index/ P e — in the final, sequenceq prod_uct,
because the sequencing primers
are immediately adjacent to the
DNA insert. However, if some
fraction of the DNA inserts are
D. Ligate index adapter shorter than the expected length,
l it is possible that sequencing
can go all the way across the
insert and read into the adapter
P5 Rd1 SP DNA Insert Index sequence on the far end. Many
S — _ of the analyses we typically want
Rd2 SP P7 can be negatively affected by
having adapter sequence left
E. Denature and amplify for final product within the reads. It decreases
mapping efficiency, confuses
assemblies, etc. It is a good practice to identify and trim off any adapter sequence that may be
present in your reads.

P7 PS5
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Low sequence quality

During sequencing, each called base is typically assigned a quality score that refers to the
likelihood that the base was correctly called by the sequencer. The common value used to
represent these per-base confidences is the Phred score.

Q=-10"* |Og10 P

Q - Phred score

P - probability of an error occurring

Eg. Phred 20 implies that you are likely to see 1 error per 100 bases, Phred 30 implies 1 error
per 1000 bases, Phred 40 implies 1 error per 10000 bases

Poor quality sequence can interfere with downstream analysis as seriously as untrimmed
adapters. It makes mapping less reliable, confuses assemblers, and is a major impediment to
variant calling. As with adapter sequence, it is a good practice to trim off low quality sequence
that may be present in your reads.

Length filtering
After trimming reads for adapter and low quality, its possible that some of the reads have been

cut down to a very short size. We typically apply a length filter requiring that after the above
trimming there be at least 60 bases of read left, otherwise we discard the sequence as a ‘short
read’. Note that the 60bp threshold is the value we will use for the T. suis dataset. If your reads
are shorter or longer, you may need to adjust that cutoff.

Low sequence complexity

These are regions that have an unusual composition that can create problems in sequence
similarity searching (as well as other kinds of analyses). These regions contain low information
content and can be ‘sticky’ during alignments. It is a good practice to filter your sequence data
for low complexity regions before running downstream analysis.

Contaminant filtering

Finally, we filter our reads to remove contaminant. By contaminant, we mean any read whose
source is not what we expect (in our case, our reads should originate from T. suis). Typical
sources of contamination are:

Host, bacteria, other (environmental contaminants). Also, for RNA-Seq work, it is often common
to filter for 18/16s ribosomal data. This is because the amount of ribosomal sequence present
can sometimes dwarf the amount of actual expressed transcript amongst your reads. So it is
helpful for downstream analysis to get rid of it.

For this demonstration, we’ll be screening for host contaminant only, in this case from pig. In
general, you will want to pick and choose the contaminant db’s you’ll use based on the situation
of each project. To save compute resources, we only want to screen for contaminants we
expect might be a problem.

Finally, be aware that contamination screening should be done after filtering out adapters, low
quality and low complexity sequence. Those earlier issues, if left unfixed, can impede the
identification of a read as contaminant.

Discard both ends or only one?
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One thing that must be considered when filtering and screening your data is whether to discard
both ends of a paired end set, or only one. Because most sequence data generated is actually
sequence from both ends of a single DNA insert, you need to think about whether a problem
seen on one end should be considered to apply to both ends or not. In general, issues with
adapter, sequencing error, and low complexity are not issues that necessarily affect both ends
of a sequence insert. In those cases, we usually will just discard the problem end and retain the
other. In the case of one end being identified as a contaminant, we normally will consider both
ends contaminants and discard them both.

Processing raw reads into an analysis-ready INPUT Prepare output for
state 2x PE fq ™ Bowtie2 mapping
Now we’re going to walk through typical steps v
we’d use to prepare our T. suis reads for ( Trimmomatic > INPUT
assembly. To do this we need to accomplish 7 2x PE fq
these things: OUTPUT 1x ORPHAN fq
2x PE fq -
a) remove any adapters that may have 2x ORPHAN fq ( coﬁ?av:,tnliii,\:f Db )
been introduced during sequencing v
library preparation f.';repsre °”tp”|t f‘?tr OUTPUT
b) remove low quality, terminal regions e — 1x PE sam
c) apply a length filter to remove short INPUT 1x ORP';'AN sam
reads after trimming 1x interleaved PE fq Prepare output for
d) remove reads of low sequence 1x ORPHAN fq hand-off to assembly
complexity v v
e) remove reads that originate from host Cfilter_by_commexity) FINAL
organism 2x PE fq
1x ORPHAN fq
OUTPUT
We’'ll use the program Trimmomatic for 1x 'broken'
adapter removal, quality trimming and length interleaved PE fq [
filtering. The filter_by complexity script from 1x ORPHAN fq

the seq_crumbs package will remove reads of low sequence complexity, and we’ll use the
Bowtie2 aligner to map the trimmed reads against a host database. Between these steps some
file manipulation is required to get the sequences into the format needed for the next step. This
data shuffling will be done using parts of the samtools & KHMER packages, as well as some old
fashioned command line unix.

The analysis-ready output

This processing will result in a set of paired end fastq, and an extra fastq of orphaned reads
whose mates were discarded (due to filtering steps that removed only a single end from a pair).
This process can be messy on a technical level due to the need to convert data between the
bam & fastq formats, and the need to keep the paired-end data synchronized and free of
orphans. In practice, we would normally assemble all these steps into a single pipeline script.
For the purposes of this demonstration, we’ll walk through each step manually.

Be aware that there are alternatives to the software we’re showing for most of these steps. The
programs we’re using are generally robust, but you may want to experiment with other options
for your data. No tool does a perfect job, and you may be able to find tools that perform better or
more efficiently for your specific dataset.

Finally, it's often reasonable to simply work only with paired end data, and discard the small
fraction of orphaned reads generated at each step. This simplifies the process at the expense of
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a small fraction of your reads. This is actually a fairly common practice, especially if you find
yourself doing an extra hour of coding work to preserve a few thousand reads out of 200 million
reads.

Processing the data
Here are the steps involved in running Trimmomatic and preparing the output for the next step.
This step trims off adapter, quality trims and filters the trimmed reads based on length.

1.3.1: cd

~/WORKSHOP RESOURCES/Section 1/module 3/Processing genomic data to cle
aned state

1.3.2: java -jar ~/bin/trimmomatic-0.33.jar PE -threads 8 -phred33 -
trimlog TRIMLOG.txt raw data/6p 7kb TSAC-Adultl-

g846 g847.1.raw.fastqg.gz raw data/6p 7kb TSAC-Adultl-

g846 g847.2.raw.fastqg.gz 6p 7kb TSAC-Adultl-g846 g847.PE endl.fastqg
6p 7kb TSAC-Adultl-g846 g847.0RPHANS endl.fastqg 6p 7kb TSAC-Adultl-
g846 g847.PE end2.fastg 6p 7kb TSAC-Adultl-

g846 g847.0RPHANS end2.fastqg

ILLUMINACLIP:databases/TruSeq adapters.fna:2:30:10 SLIDINGWINDOW:5:20
LEADING:20 TRAILING:20 MINLEN:60

1.3.3: cat 6p 7kb TSAC-Adultl-g846 g847.0ORPHANS endl.fastqg

6p 7kb TSAC-Adultl-g846 g847.0RPHANS end2.fastqg >

Tsuis genomic 7kb insert.trimmomatic ALL ORPHANS.fastqg

1.3.4: java -jar ~/bin/picard.jar FastqgToSam Fl=6p 7kb TSAC-Adultl-
g846 g847.PE endl.fastqg F2=6p 7kb TSAC-Adultl-g846 g847.PE end2.fastqg
SAMPLE NAME=Tsuis genomic 7kb insert SORT_ ORDER=coordinate
OUTPUT=Tsuis_genomic_7kb insert.trimmomatic PE coord sorted.bam
1.3.5: java -jar ~/bin/picard.jar SamToFastg

INPUT=Tsuis genomic_ 7kb insert.trimmomatic PE coord sorted.bam
INTERLEAVE=true

FASTQ=Tsuis genomic_7kb insert.trimmomatic PE interleaved.fastqg

Next we filter out low complexity data using filter_by_complexity from the seq_crumbs package,
and then prepare the output for the final Bowtie2 mapping step

1.3.6: filter by complexity -o

Tsuis genomic 7kb insert.trimmomatic and complexity.brokenPE interleav
ed.fastqg --paired reads --fail drags pair False

Tsuis genomic 7kb insert.trimmomatic PE interleaved.fastqg

1.3.7: filter by complexity -o

Tsuis genomic 7kb insert.trimmomatic and complexity.ORPHANS.fastqg
Tsuis genomic 7kb insert.trimmomatic ALL ORPHANS.fastqg

1.3.8: source /home/ec2-user/bin/KHMER/khmerEnv/bin/activate

1.3.9: extract-paired-reads.py -f

Tsuis genomic 7kb insert.trimmomatic and complexity.brokenPE interleav
ed.fastqg

1.3.10: deactivate
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1.3.11: cat

Tsuis genomic 7kb insert.trimmomatic and complexity.
Tsuis genomic 7kb insert.trimmomatic and complexity.

ed.fastg.se >

Tsuis genomic 7kb insert.trimmomatic and complexity.

1.3.12: paste - - - - - - - =<

Tsuis genomic 7kb insert.trimmomatic and complexity.

ORPHANS.fastqg
brokenPE interleav

ALL ORPHANS. fastqg

brokenPE interleav

ed.fastg.pe | tee >(cut -f 1-4 | tr "\t" "\n" >

Tsuis genomic 7kb insert.trimmomatic and complexity.PE endl.fastq) |
cut -f 5-8 | tr "\t" "\n" >

Tsuis genomic 7kb insert.trimmomatic and complexity.PE end2.fastqg

Finally, we will map the cleaned reads against a host database, pig in this case, and remove all
reads and read pairs that have either end detected as a contaminant. We’ll use Bowtie2 for this
mapping, and we’ll prepare the final, cleaned & contaminant free data for assembly

1.3.13: bowtie2-build Sus scrofa.Sscrofal0.2.dna rm.toplevel.fa
Sus_scrofa.Sscrofal0.2.dna rm.toplevel

1.3.14: bowtie2 -g -x databases/Sus scrofa.Sscrofal0.2.dna rm.toplevel
-1 Tsuis_genomic 7kb insert.trimmomatic_and complexity.PE endl.fastqg -
2 Tsuis genomic 7kb insert.trimmomatic and complexity.PE end2.fastg -S
Tsuls genomic 7kb insert.trimmomatic and complexity.mapped to host.PE.
sam

1.3.15: bowtie2 -g -x databases/Sus scrofa.Sscrofal0.2.dna rm.toplevel

-U
Tsuis genomic 7kb insert.trimmomatic and complexity
-S

Tsuis genomic 7kb insert.trimmomatic and complexity.

HANS.sam

1.3.16: samtools view -bSh -o

Tsuis genomic 7kb insert.trimmomatic and complexity.

HANS .bam

Tsuis genomic 7kb insert.trimmomatic and complexity.

HANS.sam
1.3.17: samtools sort

Tsuis genomic 7kb insert.trimmomatic and complexity.

HANS .bam

Tsuis genomic 7kb insert.trimmomatic and complexity.

HANS.sorted
1.3.18: bamtools filter -in

Tsuis genomic 7kb insert.trimmomatic and complexity.

HANS.sorted.bam -out

Tsuis genomic 7kb insert.trimmomatic and complexity.

bam -isMapped false
1.3.19: java -jar ~/bin/picard.jar SamToFastqg

.ALL ORPHANS.fastqg

mapped to host.ORP

mapped to host.ORP

mapped to host.ORP

mapped to host.ORP

mapped to host.ORP

mapped to host.ORP

host free.ORPHANS.

INPUT=Tsuis genomic_ 7kb insert.trimmomatic and complexity.host free.OR

PHANS .bam

FASTQ=Tsuis genomic_7kb insert.trimmomatic and complexity.host free.OR

PHANS. fastqg
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1.3.20: samtools view -bSh -o

Tsuls genomic 7kb insert.trimmomatic and complexity.mapped to host.PE.
bam

Tsuls genomic 7kb insert.trimmomatic and complexity.mapped to host.PE.
sam

1.3.21: samtools sort

Tsuls genomic 7kb insert.trimmomatic and complexity.mapped to host.PE.
bam

Tsuls genomic 7kb insert.trimmomatic and complexity.mapped to host.PE.
sorted

1.3.22: bamtools filter -in

Tsuls genomic 7kb insert.trimmomatic and complexity.mapped to host.PE.
sorted.bam -out

Tsuis genomic 7kb insert.trimmomatic and complexity.host free.PE.bam -
isMapped false -isMateMapped false

1.3.23: java -jar ~/bin/picard.jar SamToFastqg

INPUT=Tsuis genomic_ 7kb insert.trimmomatic and complexity.host free.PE
.bam

FASTQ=Tsuis genomic_7kb insert.trimmomatic and complexity.host free.PE
_endl.fastqg

SECOND END FASTQ=Tsuis genomic 7kb insert.trimmomatic and complexity.h
ost free.PE end2.fastqg

Evaluating our analysis-ready data
Now that we've processed our data to an analysis-ready state, lets run FastQC again on the
final output and compare it back to the FastQC results from the original, raw data

1.3.24: cd /home/ec2-

user/WORKSHOP RESOURCES/Section 1/module 3/Processing genomic data to_
cleaned state

1.3.25: mkdir FASTQC OUTPUT

1.3.26: fastgc -o FASTQC OUTPUT -extract -f

Tsuis genomic 7kb insert.trimmomatic and complexity.host free.PE endl.
fastqg

Tsuis genomic 7kb insert.trimmomatic and complexity.host free.PE end2.
fastqg

We’'ll then use the chrome browser (as before) to compare the final paired fastq files to the
original, raw paired fastq files.

Useful information:

(Trimmomatic) http://www.usadellab.org/cms/?page=trimmomatic

(Bowtie2) http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
(seq_crumbs) https://bioinf.comav.upv.es/seq_crumbs/available _crumbs.html
(bamtools) https://github.com/pezmaster31/bamtools
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Section 1: Genome
Module 4: Genome assembly

There are a lot of choices when deciding on a genome assembler. Considerations include the
predicted genome size, the technology type, and the cost (computational, and paying for the
assembler). Today’s demonstration will be using ALLPATHS-LG, which is a de Bruijn Graph
assembler for large genomes. ALLPATHS-LG requires paired end reads from at least one
fragment and one jumping library sequenced on the lllumina platform. The use of multiple
libraries enables ALLPATHS-LG to build a higher quality assembly. When using ALLPATHS_LG,
our recommended sequence coverage requirements are: 45x fragments, 45x 3-8kb and 10x-
20x Irg insert ie. 5kb+. In our assembly, we will be using 11,898,407 fragment read pairs,
4,960,173 3kb read pairs and 2,975,142 7kb read pairs

ALLPATHS-LG requires a specific format for input sequence data files in order to run the
assembler. PrepareAllPathsInputs.pl, an ALLPaths script, will be run after we begin by setting
up two dependency files:

Dependency File #1: in _groups.csv

100,I1lumina 011, /home/ec2-

user/WORKSHOP RESOURCES/Section 1/module 4/Tsuis/all path data/13p fra
gment.*.trimPaired.fastqg.gz

200,I1lumina 012, /home/ec2-

user/WORKSHOP RESOURCES/Section 1/module 4/Tsuis/all path data/33p 3-

5kb .*.trimPaired.fastg.gz

300,I1lumina 013, /home/ec2-

user/WORKSHOP RESOURCES/Section 1/module 4/Tsuis/all path data/6p_ 7kb.
*.trimPaired.fastqg.gz

Notes: This file does not require a header with each field type.

Group name: unique name for data set (free form)

Library name: library name for data set (free form but good practice to use some identifying
nomenclature)

File name: absolute path to data file. Wildcard characters * and ? are accepted in the name of
the file but NOT the file extension.

Supported extensions are .bam, .fasta, .fa, .fq, .fastq.gz, and fq.gz (all case specific). Also, if
you use .fasta or .fa, the script expects a corresponding .quala or .ga file to exist for each
respective file.

Dependency File #2: in_libs.csv

library name,project name,organism name, type,paired, frag size,frag std
dev,insert size,insert stddev,read orientation,genomic start,genomic e
nd

Illumina 011,Awesome,T.suis, fragment,1,205,10,,,inward,,

Illumina 012,Awesome,T.suis, jumping,1,,,7475,500,0utward,,

Illumina 013,Awesome,T.suis, jumping,1,,,2833,500,0outward,,
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Notes: Every field is required in this file. A header is used, and each field must be represented
in the data entered (a comma separated field can be left blank; see example above).
Library_name: must match same field in in_group.csv

Project_name: free form name

Organism_name: organism

Type: informative field only ie fragment, jumping EcoP15, etc.

Paired: 0 = unpaired reads; 1: paired reads

Frag_size: average # of bases in the fragment library

Frag_stddev: estimated standard deviation of the fragment sizes

Insert_size: average # of bases in the jumping library inserts (if larger than 20kb the library is
considered Long Jumping)

Insert_stddev: estimated standard deviation of the insert sizes

Read_orientation: inward or outward

Genomic_start: index of the FIRST genomic base in the reads. If not zero, then all bases before
the genomic start will be trimmed off

Genomic_end: index of the LAST genomic base in the reads. If not zero, then all bases after
the genomic end will be trimmed off

With these two files prepared, you can now run:
1.4.1: PrepareAllPathsInputs.pl DATA DIR=/home/ec2-

user/WORKSHOP RESOURCES/Section 1/module 4/Tsuis/all path data
PLOIDY=2

Other optional settings include:

PICARD_TOOLS_DIR (use version 1.101) if you are using .bam files in the .csv files made
above.

INCLUDE_NON_PF_READS=1 allows you to use the orphan reads kept in the previous module.

GENOME_SIZE, FRAG_COVEAGE, JUMP_COVERAGE, and LONG_JUMP_COVERAGE
used together you can set the desired coverage percentage based on the estimated size set for
GENOME_SIZE

Now we can start the assembly:

1.4.2: RunAllPathsLG PRE=/home/ec2-
user/WORKSHOP RESOURCES/Section 1/module 4 REFERENCE NAME=Tsuis
DATA SUBDIR=all path data RUN=myrun SUBDIR=attemptl

Notes: All of the ALLPATHS arguments are to set the pipeline directory names. If your
ALLPATHS run fails at any point, you can troubleshoot the issue and then restart ALLPATHS
and it will restart on the stage that failed (as long as you don’t delete any of the directories/data
that was produced up to that point).

Use the following command which adds “OVERWRITE=True”:

1.4.3: RunAllPathsLG PRE=/home/ec2-
user/WORKSHOP RESOURCES/Section 1/module 4 REFERENCE NAME=Tsuis
DATA SUBDIR=all path data RUN=myrun SUBDIR=attemptl OVERWRITE=True

This assembly took 5.3 hours. When the assembly finishes it will be found at the following
location:

=29 -


- 21 -


/home/ec2-
user/WORKSHOP_RESOURCES/Section_1/module_4/Tsuis/all_path_data/myrun/ASSEMBLY/
attempt1/final.assembly.fasta

Useful information:
ftp://ftp.broadinstitute.org/pub/crd/ALLPATHS/Release-LG/AllIPaths-LG Manual.pdf

Quality Assessment

Assembly improvement and QC of de novo assemblies go hand in hand since high-quality draft
genomes lead to more successful and accurate annotation. We use a combination of CEGMA,
N50, and RNA mapping to assess the quality of an assembly.

CEGMA (Core Eukaryotic Genes Mapping Approach) uses a defined set of 458 single-copy,
conserved eukaryotic genes, and searches for orthologs of these proteins in the de novo
genome assembly. Since these proteins are conserved across eukaryotes ranging from yeast to
plants to humans, the completeness of this protein set in a draft genome is a useful indicator of
the genome quality. CEGMA produces a completeness report, but we prefer to parse the
cegma.dff file against the core proteins to get a count of the CEGs (Core Eukaryotic Genes) and
IcCEGs found in the assembly.

1.4.4: cegma --genome final.assembly.fasta -threads 8 &

paired-reads N50 is a basic statistic for
describing how contiguous an
£\ PP remove low- assembly is. The longer the
(®) quality edges N50 is, the better the assembly.
RNA mapping looks at the
© scaffold percent of gene contained within
the assembly
paired-
reads Assembly Improvement
After assessing an assembly,
we can take advantage of
numerous assembly
@ —0 readsin _—— — improvement tools. Two open
T thegap — = K-TETS source options that we use are
—_— _ — GapFiller and PBJelly. PBJelly
. (part of PBSuites) is able to fill
j—‘ gaps and merge scaffolds
2l - T utilizing long reads (which is
— e extend gap Ing long :
— = edges with k-mers particularly u_seful _for PacBio
] data). For this project, we do not
have any available PacBio data,
Schematic overview of the GapFiller algorithm. (@) The input data consist of a set of scaffold so we will be UtlllZlng GapFlller
taini d leotid d ts of paired-end and/ te-pai ds. . .
(B) As a pre.processing step low quality nuclectides are removed from the sequence adges, tus | instead. The image below
enlarging the gap of ten nucleotides from each side. It should be stressed that the contig ends i”UStrateS hOW GapFl”er fl”S the
resulting from a draft assembly often contain misassemblies. (c) Paired-reads are aligned to the .
scaffolds and retained if one pair aligns to a scaffold sequence (dark grey) and one pair to a gapped Contlg gaps:
region (black). (d) All pairs that are estimated to fall in the gapped regions are split into k-mers and
used for gap filling. (e) The gap is closed from each edge by using k-mers that present a sequence
overlap of size (k-mer - 1) and one nucleotide overhang. Gaps are closed if the right and left
extensions can be merged and correspond to the estimated sequence gap.
Boetzer and Pirovano Genome Biology 2012 13:R56 doi:10.1186/gb-2012-13-6-r56
Download authors' original image
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We will start by creating the libraries.txt file:

Libraries File: libraries.txt

1ib100 bowtie
/gscmnt/gc2546/mitrevalab/research/t suis class/25p fragment lib TSAC-
Adultl-g846 g847.1l.raw.fastg
/gscmnt/gc2546/mitrevalab/research/t suis class/25p fragment lib TSAC-
Adultl-g846 g847.2.raw.fastg 205 0.3 FR

1ib200 bowtie /gscmnt/gc2546/mitrevalab/research/t suis class/65p 3-
5kb TSAC-Adultl-g846 g847.1l.raw.fastqg
/gscmnt/gc2546/mitrevalab/research/t suis class/65p 3-5kb TSAC-Adultl-
g846 g847.2.raw.fastg 7475 0.5 RF

1ib300 bowtie
/gscmnt/gc2546/mitrevalab/research/t suis class/12p 7kb TSAC-Adultl-
g846 g847.1.raw.fastqg
/gscmnt/gc2546/mitrevalab/research/t suis class/12p 7kb TSAC-Adultl-
g846 g847.2.raw.fastg 2833 0.5 RF

Notes:

Library Name: free form
Mapper: bowtie or bwa
Path to both mate pairs files
Insert size

Error

Read orientation

We then run GapFiller using:

1.4.5: GapFiller.pl -1 libraries.txt -s final.assembly.fasta -T 8 -Db
Tsuis -i 5

Notes: - is the file made above; —s assembly file; —T threads; —b directory and root file name; —i
iterations. Runtime varies based on number of gaps and amount of data used

Useful links:
http://korflab.ucdavis.edu/datasets/cegma/README

Section 1: Genome
Module 5: Genome annotation

“A beginner’s guide to eukaryotic genome annotation”
http://www.nature.com/nrg/journal/v13/n5/full/nrg3174.html is a great resource. The first step
when annotating a genome is to identify repeat sequences, because they can interfere with
gene predictors and evidence alignment.

Masking repeats
Tandem Repeat Finder (TRF): Start by using TRF to mask short interspersed tandem repeats:
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1.5.1: trf Tsuis.gapfilled.final.fa2 7 7 80 10 50 500 -d -m -h >>
TRF.stdout

Now we need to create a blast database for RepeatModeler:

1.5.2: makeblastdb -in final.assembly.fasta.2.7.7.80.10.50.500.mask -
dbtype nucl

Running RepeatModeler (run time is 24-36 hours):

RepeatModeler -database Tsuis.gapfilled.final.fa.masked.fasta >>
RM stdout

Repeatmodeler will create an RM_[PID].[DATE]/ directory,
(e.g. RM_10825.ThuAug271528572015/)

Once RepeatModeler has completed, you will need to QC the output to check for repeats that
are really genes (gene families) or RNA features.

The following are the screening steps for QC:
Blastx vs nr for protein coding genes:

1.5.3: blastx nr consensi.fa.classified E=10e-5 -0
consensi.fa.classified.nrcheck.blast.out

Blastn vs RNA database for ribosomal or other RNA genes (Rfam.fasta comes with the Rfam
download):

1.5.4: blastn Rfam.fasta consensi.fa.classified 10e-5 -o
$1.rnacheck.blast.out

Retrotransposon check:

1.5.5: blastx transposonDb consensi.fa.classified E=10e-5 -o
S1l.retrocheck.blast.out

The final file output from RM is consensi.fa.classified file in the RM directory

(e.g. .M_10825.ThuAug271528572015/consensi.fa.classified). We then screen the blast.out
files with tools that look at P >=0.01 identity/coverage (50% PID/20% Identity) and naming that
is known to be acceptable and database types that lead us to believe the protein has been
checked:

"unknown", "hypothetical", "oxidase", "histone", "kinase", "protease”, "reductase”, "RNA",

"synthase", "ATPase", "phosphatase”, "cytochrome", "ribosomal"”, "titin", "extensin", "abductin",

"tRNA", "drosophila", "nucleosome”, "transferase", "unnamed", "polyprotein”, "putative",

"peptide", "resolvase", "alpha", "beta", "fusion”, "lactamase", "galact", "integrase”, "ref", "emb",

"dbj“, "gb", "pir", "prf", "Sp", "pdb“, "|ntron , Synthetase"

6: mkdir RepeatMasker
7:

1.5.
1.5. cd RepeatMasker
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1.5.8: RepeatMasker -1lib repeats.lib
trf.masked.fasta >>RepeatMasker.stdout

Note: The input sequence can be split into chunks to expedite.

RepeatMasker outputs the following files:

D918.newname.fsa.masked - Masked fasta

D918.newname.fsa.tbl - Summary table gives total %masked and breakdown of types
D918.newname.fsa.log - run output

Other output files with details of repeats/positions etc.

D918.newname.fsa.cat D918.newname.fsa.out D918.newname.fsa.ref

Useful links:

https://tandem.bu.edu/trf/trf.html
http://www.repeatmasker.org/RepeatModeler.html
http://www.repeatmasker.org/webrepeatmaskerhelp.html

We also annotate non-coding RNAs using the Rfam and tRNA scan. We mask these predictions
before running the predictor programs, in order to further simplify the regions the predictors
have to look at.

Rfam - http://nar.oxfordjournals.org/content/43/D1/D130

1.5.9: rfam scan -f tab -o Rfam.out File.fasta

-f specifies format
-0 specifies output location
The last argument is just the sequence file to use

Notes: For rfam scan, we modified the script so that it skips the rare group Il introns, because if
greatly reduces the run time.

We can scan a sequence file for tRNAs using tRNAscan, EufindtRNA & tRNA covariance.

tRNAscan - http://lowelab.ucsc.edu/tRNAscan-SE/Manual

1.5.10: tRNAscan-SE -o tRNAscan.output File.fsa

Annotation
Producing gene predictions to produce a high quality final set of gene annotations.
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'Option 1: ] 'Option 2: [ Option 3:

| predict predict and choose | | full-scale annotation pipelines
Run single ab initio Run battery of ab initio Align ESTs, proteins and RNA-seq data to genome
gene predictor gene predictors ‘ l ‘
l Run battery gene predictors in evidence-driven mode

Consensus- i ‘

based chooser S
Post process gene predictions to
add UTRs and alternatively spliced

4 Most likely CDS transcripts based on evidence  /
Mel for each gene Consensus-
5 based chooser 3
(2]
3 Best consensus CDS Consensus- Evidence- 3
2. model for each gene based chooser based chooser 2.
-
@ @
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? model for each gene o
2 . 3
e . Best consensus mRNA =
1 - modelis) for each gene | [ ;aNA model(s) for each 3
: - gene most consistent
. ' ' with evidence
\4 \/ \J
Optional manual curation using genome browser
s = v
. - .
CHER R Jap—
gene models
\ == . 4
[s) P Increasing accuracy > @

Nature Reviews | Genetics
A beginner's guide to eukaryotic genome annotation. M Yandell & D Ence Nature Reviews Genetics 13, 329-342 (May 2012).

We will perform annotation using Maker (M. Yandell et. al., 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2134774/pdf/188.pdf

First, we generate config files for Maker:

1.5.11: maker -CTL
This creates 3 default config files:

maker_bopts.ctl : blast type and cut-off
maker_exe.ctl : program paths
maker_opts.ctl : all other parameters

The -CTL option will give you default parameters. You will need to set up paths in each file to
match the system you are on (paths to blast databases, etc). For our maker runs, we only need
to do the -CTL once, and then we copy the ctl files to the new directories so we don't have to
update paths for blast exe's etc. We only need to change the maker_opts.ctl file for blast db's.
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Change any parameters and/or paths which are different from the working copy, including:

path to sequence file

protein database path

EST database path

alt-est database path if needed

ab initio predictors being run

ab initio corresponding model files
model_gff and/or pred_gff or other _dff files
evidence predictors

Open maker_opts.ctl and add path to these lines

Find this line:
#-----EST Evidence (for best results provide a file for at least one):

1.5.12: est= #set of ESTs or assembled mRNA-seq in fasta format

Beneath this EST Evidence section, also change:
#-----Protein Homology Evidence (for best results provide a file for at least one)

1.5.13: protein= #protein sequence file in fasta format (i.e. from
mutiple oransisms)

To run any of the predictors: Snap, Fgenesh, Augustus you need to train them. Fgenesh is a
commercial predictor that you would need to purchased, but snap is free and maker also works
with GeneMark and others, but those are the most common. We are not going to go perform
overpredictor training today.

To run maker:

1.5.14: maker --RM off -g File.fasta maker bopts.ctl maker exe.ctl
maker opts.ctl

Here is some information on the directory structure and the files that maker outputs:
Path/Maker

maker_bopt.ctl

maker_ext.ctl

maker_opts.ctl

GENOME.maker.output/ - contains all output for a given run of MAKER
maker_bopts.log : These are logs of the control files used for this run of MAKER
maker_opts.log

maker_exe.log

seen.dbm
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sequnce_maker_length_99.db
sequnce_maker_length_99 master_datastore_index.log - log of MAKER run progress as well
as an index for traversing through the output

mpi_blastdb/ - Contains fasta indexes and error corrected fasta files built from the EST and
protein database provided by the user.

*.mpi.10/ - contains indexed database files
nematode_protein_new.mpi.10/ - contains indexed database files

<Sequence_name>. datastore/ - contains subdirectories that hold the output for each
individual contig of the input fasta file. See DATASTORE DIRECTORY STRUCTURE section in
README for more information

08/ 25/Contig#/ - first two directories; numbers/letters vary

run.log

<Sequence_name>.dff - a gff file that can be loaded into GMOD, GBROWSE, or Apollo
<Sequence_name>.maker.snap.proteins.fasta - a fasta file of ab-inito predicted protein
sequences from program

<Sequence_name>.maker.snap.transcripts.fasta - a fasta file of ab-inito
predicted transcript sequences from program

<Sequence_name>.maker.transcripts.fasta - a fasta file of the MAKER annotated transcript
sequences

<Sequence_name>.maker.proteins.fasta - a fasta file of the MAKER
annotated protein sequences

<Sequence_name>.maker.non_overlapping_ab_initio.proteins.fasta - a
fasta file of filtered ab-inito protein sequences that don't overlap maker annotations

<Sequence_name>.maker.non_overlapping_ab_initio.transcripts.fasta - a fasta file of filtered
ab-inito transcript sequences that don't overlap maker annotations

theVoid.Contig#/ - a directory containing all of the raw output files produced by MAKER,
including BLAST reports, SNAP output, exonnerate output and the masked genomic sequence.
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Explaining GFF3 files

http://www.broadinstitute.org/annotation/argo/help/gff3.html

Field Descriptions (Note: Except for the last field [9], all gff flavors are the same):

1. seqname - The name of the sequence. Typically a chromosome or a contig. Argo does
not care what you put here. It will superimpose gff features on any sequence you like.

2. source - The program that generated this feature. Argo displays the value of this field in
the inspector but does not do anything special with it.

3. feature - The name of this type of feature. The official GFF3 spec states that this should

be a term from the SOFA ontology, but Argo does not do anything with this value except

display it.

start - The starting position of the feature in the sequence. The first base is numbered 1.

end - The ending position of the feature (inclusive).

score - A score between 0 and 1000. If there is no score value, enter ".".

strand - Valid entries include '+, '-', or ." (for don't know/don't care).

frame - If the feature is a coding exon, frame should be a number between 0-2 that

represents the reading frame of the first base. If the feature is not a coding exon, the

value should be '.". Argo does not do anything with this field except display its value.

9. GFF3: grouping attributes Attribute keys and values are separated by '=' signs. Values
must be URI encoded.quoted. Attribute pairs are separated by semicolons. Certain,
special attributes are used for grouping and identification (See below). This field is the
one important difference between GFF flavors.

i R

Special Field 9 Attributes:

The first special thing about field 9 attributes is that they can be associated with transcripts.
Previous flavors of GFF restricted attributes to the lowest level subfeature (exons).

Any key=value attribute pair will be displayed by argo, but the following have special meaning:

1. ID - unique identifier for this feature.
2. Parent - identifier of parent feature.
3. Name - used as the feature label in the feature map.

Section 1: Genome
Module 6: Functional annotation

This module will review two standard methods for assigning functional annotations to a de novo
geneset. We’'ll run a protein vs. protein alignment using the NCBI's BLASTP+, and we’ll discuss
the interproscan program and take a look at typical interproscan output and how to make use of
it.
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Using NCBI's BLASTP+ to assign functional annotation

One common method of assigning a function to a set of de novo gene calls is simply by
mapping them to an already annotated set of genes from closely related organisms. We’ll go
over the details of actually running a blastp in a bit, but first we’ll review how to locate and
prepare a database for this mapping.

If you happen to have a highly conserved organism’s gene set handy that happens to already
be well annotated, you may not need to do anymore digging. For example, if you are working
with a non-parasitic nematode, you can’t do much better than to simply use the highly curated
and well annotated C.elegans gene set for this mapping. Bu t if you are working with an
organism not in that happy circumstance (as most of us are, all the time), the next best thing is
to walk the lineage of your species using GenBank’s Entrez Records which are avaible when
using a taxonomy search. Lets do this now:

1. Open a browser on your laptop
) Go to the NCBI website at http://www.ncbi.nlm.nih.gov
3. Enter “Trichuris suis” in the search box at the top of the screen, and set the search menu
to “Taxonomy”, then click “Search”
4. Click through the “Trichuris suis” link
5. Notice the “Entrez records” table on the right side of the screen. What we want is to find

a level of taxonomy above our species for which GenBank has a good number of
“Protein” available

6. Click on the genus level link in the lineage (Trichuris)

7 Click the “Trichuris” link at the top of the list of species to get back to the “Entrez records”
table at that level in the taxonomy

8. Notice that GenBank has 48,510 proteins available for this taxa, click on the “48.510”
number which is a link that will prepare an output set of those proteins
9. Now we will download this protein set. Open the “Send to:” menu in the upper right

corner of the page
10. Choose Destination “File”
11. Set the Format to “Fasta”
12. Click on “Create File” to download the file

For the purposes of this workshop I've already prepared a somewhat smaller db for use in our
demonstration, which is already available in the EC2 instance (i.e. you don’t really need to
download the above). But the above process is very useful for when you don’t have a specific
protein db in mind, yet you want to assign blastp annotations to your gene set basic on
homology to related organisms.

Running NCBI's BLASTP+

Now we’re going to actually map our gene set to our protein database and filter based on
alignment strength. First we need to prepare the blast database for use.

1.6.1: cd /home/ec2-

user/WORKSHOP RESOURCES/Section 1/module 6/NCBI Blast+/database
1.6.2: makeblastdb -in Ttrichuira geneset.fna -dbtype prot

Next we can start the blastp alignment
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1.6.3: cd /home/ec2-

user/WORKSHOP RESOURCES/Section 1/module 6/NCBI Blast+

1.6.4: blastp -db database/Ttrichuira geneset.fna -query
Tsuis.protein.faa —-num threads 8 -outfmt 6 -max target segs 1 -out
Tsuis vs Ttrichiura.raw blastp.tsv

Then we would typically parse the results using some alignment scoring threshold to filter out
only the solid hits

1.6.5: awk '{if ($11<1le-05) print $0;}' <

Tsuis vs Ttrichiura.raw blastp.tsv >

Tsuils vs Ttrichiura.raw blastp.tsv.hits at 1e-05

The output format we selected using the —outfmt 6 argument produces results in this tab-
delimited format:

Query id

Subject id

Percent identity

Alignment length

Mismatch count

Gap open count

Start of alignment in query
End of alignment in query
Start of alignment in subject
End of alignment in subject
E-value

Bitscore

The results at this point will provide associations between our de novo gene set and the genes
from our database. We would then use a lookup script to go back and extract the full line
annotations from our database and add them to our new genes. While we won’t cover that in
this workshop, we’d be happy to provide scripts for this on request after the class.

Interproscan

Interproscan is a program that searches a collection of databases and reports associations to all
these databases for each gene searched. For our purposes we are mainly interested in the IPR
and GO annotations provided by this software. But here is a full listing of what is searched:

PANTHER, PFAM, PIRSF, PRINTS, PRODOM, PROSITE, PROFILE, SMART, TIGRFAMs,
GENE3D, SSF, SWISSPROT, TREMBL, INTERPRO, GO, MEROPS, UniProt, HAMAP, PFAMB

Due to its resource intensive nature, and the size of the databases needed in its execution we
are not able to demonstrate this software live in our workshop. So we’ve short-cut this section
and deposited pre-built interproscan output for the T.suis gene set in the EC2 instance. First
lets take a look at the raw output

1.6.6: cd /home/ec2-
user/WORKSHOP RESOURCES/Section 1/module 6/Interproscan
1.6.7: more trichuris suis interpro results
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That command will scroll through that file one page at a time. The length of each line will cause
the output to wrap on your screen, making it look messy. But the output of interproscan is
actually organized into tab-delimited columns:

Protein Accession

Sequence MD5 digest

Sequence Length

Analysis (i.e. the db that was searched on this line)

Signature Accession

Signature Description

Start location

Stop location

Score (i.e. usually the e-value of the match reported by member database method,
although sometimes a specific search engine will report a non- e-value based score)
10. Status

CoNoOORA~WN =~

11. Date
12. InterPro annotations — accession (optional column)
13. InterPro annotations — description (optional column)

14. GO annotations (optional column)
15. Pathways annotation (optional column)

Parsing Interproscan results for downstream use

In order to prepare these annotations for downstream analysis (primarily the building of the
gene summary table, and the expression analysis that will be shown in Section 2) we need to
parse our raw interproscan output into a pre-arranged format that we typically use for that later
work. This requires the use of a locally generated perl script (that we’re happy to share on
request), and would normally build files for both GO and IPR annotations. As a demonstration
we’ll show how we use this script to generate the GO index

1.6.8: scripts/prepare_files_for_FUNC.no_parents.pl -iprscan_file trichuris_suis_interpro_results
-GO_description GO.terms_and_ids.obo.120531 -gene_fof tsuis_full_gene_list.txt -output
Tsuis.GO_annotatioN_index

If you ‘more’ the output file, you’ll see that this is a much simpler format than trying to work with
the native interproscan result file. This parsed annotation file will be used in Section 2 to help
populate the gene summary table in Excel. This format (3 simple columns) should be easy to
work with within the spreadsheet.

Useful information:

(NCBI BLAST+ UNIX tutorial) https://molevol.mbl.edu/wiki/index.php/BLAST UNIX_Tutorial
(NCBI BLAST+ command line arguments) http://www.ncbi.nlm.nih.gov/books/NBK279675/
(Interproscan) https://github.com/ebi-pf-team/interproscan/wiki
(
(

Interpro Db) https://www.ebi.ac.uk/interpro/about.html
Gene Ontology) http://geneontology.org
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Section 2: Transcriptome
Module 0: RNA isolation to sequence production

1) Experimental design
2) Library construction & sequencing

Experimental design

*  What'’s the purpose?
* Gene discovery
+ Differential expression

* More reads = more confidence
* Depth
+ Depends on genome size, coding features, etc.

* More for discovery of novel features, low expression genes

* Replicates
* Biological, not technical
* More is better for differential expression, 3 per condition

» Collect appropriate meta-data when you collect your RNA
 Strain/isolate/batch
+ Sex, age, patency
+ Treatments

Resource: https://genome.ucsc.edu/ENCODE/protocols/dataStandards/ENCODE_RNAseq_Standards V1.0.pdf,

http://gkno2.tumblr.com/post/24629975632/thinking-about-rna-seg-experimental-design-for
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Quality control of RNA sample

Nanodrop quantitation

= 5 k nz m n: : : E V‘ 3 S %7&7 Firmware: C.01.069
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+ Peaks at particular O e Tos Wk i e
Assay Qass: Eukaryote Total RNA Pico
absorbance range can V26
. i | P - . N B Assay Comments: Total RNA Analysis pg sensitivity (Eukaryote)
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nucleotides Ti e AP e T omm
xT0zBB H_RY-4817-M1500781 xT0zBC H_RY-4817-M1500779 xT0zBD H_RY-4817-M1500778
vy v wr|
Qubit fluorometric quantitation . | *1 [, =
+ Use Separate kits to 25 200 1000 | 4000 = % 200 100 | 400 = 2% 200 1000 | 4000 P
xT0zBE H_RY-4817-M1500780 xT02)2 H_T)-5074-003-M1501554 xT0z)8 H_T1-5074-002-M1501558
measure RNA, DNA and oo o o
protein individually = il “]
N Al Llh W
Agilent bioanalyzer to assess s mee
integrity “] *
* RNA integrity number Lk
(RIN)

Production of lllumina RNAseq data

AAAAAAAAA 1)
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DNAse treatment

PolyA+ RNA captured

* Assess quality & concentration == ——= T_ === === == 2)RNA fragmented and primed

* Poly(A) selection == == == == == == 3)Firststrand cDNA synthesized

« Fragmentation 1

° cDNA synthesis —— 4) Second strand cDNA synthesized
+ oligo(dT) & random 5 1

| e— 5) 3’ ends adenylatedand 5’ ends repaired

hexamers Y

!

‘ lerary preparatlon \\ /~  6)DNA sequencing adapters ligated

-+ Sequencing /T

Rdl
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<— <—
Rd2  Index
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O
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RNA-seq analysis overview

ﬁ RNA sequencing and

read cleaning

\
Genome _l RNA-Seq dataset(s) I_ No genome

available
v

reads to isoforms

{

Table of read
counts per isoform
or exon

available
v
Isoform _ Map RNA-Seq reads
reconstruction to genome
v
Map RNA-Seq

A4

de novo transcriptome
assembly

\

Map RNA-Seq reads to
transcriptome

\

Table of read counts
per gene

\

Table of read counts
per transcript or gene
model

\

Downstream analysis (differential gene expression,
clustering, PCA, functional enrichment, etc).

Read pre-processing and filtering: a very stringent protocol

1)
2)
3)

Adapter removal

Quality trimming & filtering

Contaminant filtering

Resource: http://www.nature.com/nprot/journal/v8/n8/pdf/nprot.2013.084.pdf, specifically Box 1
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Our “test” dataset

Life cycle of Trichuris suis

- Larval
* 10 days post
inoculation (dpi),
L2
* 16 dpi, L3
« 17 dpi, L3
- 21dpi, L4
- Adult
Embryonated .
uninnoslsdw Y 42 dpl’ L5
vy * Adult rep1
Infective stoge
7 W Adult rep2
Larvae hotchin
small intestine.
(11 bL)
Our “test” dataset
300-500bp fragment
I ! |
Read 1 > —— - < Read 2
L2_10d L3_16d L3 17d L4_21d L5_42d L5 r163 | L5 r179
Total raw pairs| 43,592,929 | 54,459,400 | 47,371,505 | 58,231,629 | 55,800,467 | 32,809,672 | 41,902,924 | 334,168,535
23&2;2?”““ 4,435,622 | 5511,063 | 4,817,349 | 5,891,002 | 5,644,329 | 3,337,590 | 4,258,806 33,895,761

Resource: http://www.htslib.org/doc/samtools.html

Counting reads in a bam file
samtools view -b —-c input.bam

* Divide by 2 to get pairs!

Downsampling:

samtools view -b —-s XX.XX -o output.bam input.bam
* -b: input is bam format

- -s: random down-sampling, integer before the decimal is seed for
random number generator, after the decimal is the % reads to maintain

+ -0: output file name
Convert bam - fastq as before

O
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Adapter detection

+ Use fastqc to identify any adapter sequences that may need to be clipped

7] Per base sequence quality

Quality scores across all bases (Sanger / llumina 1.9 encoding)

a0
38
36
34
32
30
28
26
24
22
20
18
16
14
12
10
8

5
2
2
0

%IITm
i

ol

It

1 2 3 4 5 6 7 8 9

1519 2529 3539 4549 5559 6569 7579 8589 9599
Position in read (bp)

[WARN] Overrepresented sequences

WTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 116516 0.13364093979553426 No Hit

Resource: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ ( ’
NuGEN Ovation RNAseq System V2
Ribo-SPIA"'RNA Ampalioation Procees « Single Primer Isothermal
Total RNA S . . .
s oA P ONARNA Amplification protocol used in cDNA
Step 1 _ synthesis
First Strand cDNA Synthesis RTD Reverse Transaipiase ) )
First Strand cDNA * SPIA adapters linked to primers
) NG + Fragmentation following cDNA
Second Strand cDNA Synthesis D DNAPojmeres synthesis, so most reads won’t have
Double-stranded cDNA
= SPIA
" RNaseH
ep 3 @D DNA Polymerase
Amplification Cycle - SPIA Primer (DNA/RNA)
SPIA® Amplification
\E%? " N 5’ CTTTGTGTTTGAI | 3’
\ e 5’ CTTTGTGTTTGA W ) | ) 3’
Resource: http://www.nugen.com/sites/default/files/M01114_v4.1%20-%20User%20Guide,%200vation%20RNA (—
%20Amplification%20System%20V2.pdf _)

90699 0.10402948606642146 No Hit
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Adapter detection

Checking for adapters in your file:
grep -B 1 -A 2 -colour “"CTTGTGTTTGA” L2 10d.l.raw.fastqg

(] @ 1. smenulty@linus201: /gscmnt/gc2529/mitrevalab/smenulty/INFORMATICS_CLASS/DOWNSAMPLE...
B@CFDFFFHHGHHII)JFIIJHF@FFHEGED?EGIJIJIIGG@?47@F@4 ; AEDDC ; BCEDDDCCCDCCDBDD/55>B5<?7 : @DCE@C: : 345<<@>(@

@HWI-ST495:145248488: (49CBACXX:5:1101:15234:16101/1
CTTGTGTTTGAGTGTGAGTTAAAAAATTCAATTTAATTTATTCAAAGATCATTCAGCTAACAGAGATAATAATATAAATATGAGAAATAAGTTACCTAAA
+
BCCFDFEFHHFHFHGIGIH]J1J1]J1JJ1133313333333333333333333333313133333CCGITIIITIHHHHHHHF FFFFFEDDEEEEDDD

@HWI-ST495:145248488: (49CBACXX:5:1101:16738:16367/1

CTTGTGTTTGAGCCCGTAAAGGCAATCTATGTAAGCATCA CGTCGGAACTACTAGAACTGCTAGAACTGCTGCTGGATCCACGACTGTAAATGTAA
+
BCCFDFFFHDHFH]JJI1J131333333J11133333333333333J1)3GHIIIIITHHHHGHFFFFFFEEEEEEDDDDDDDDDDDDDDDDDCDDDEDE

@HWI-ST495:145248488: C49CBACXX:5:1101:11307:17922/1

CTTGTGTTTGA A

+
B@CFDEFFHHHHHIJJ113J33JI1I(=CHHHFDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDBBE

@HWI-ST495:145248488: C49CBACXX:5:1101:10432:18732/1

CTTGTGTTTGAGCGCACGGTCGTACGTGAAGTCCGG CAG CGTCCATTAA CTTCTTCGGAAACCATCAGCTCGCGAACATTTCCCC
+

:=?D=D==D; 2C?11C@EAE ; DD@BDAI8OB* /9776 ; AG@7) . A7AD ; 473> 1= BiHHHHHHHHHH AR R A

@HWI-ST495:145248488: (49CBACXX:5:1101:7734:19586/1
CTTGTGTTTGAGGGTACTTTGTGTTTGACTTCTATAGTTTAGGTAACTTTGTGTTTAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCAGGACGTAT

To count sequences with an adapter
grep —c¢ “ACTTGTGTTTGA” L2 10d.l.raw.fastqg

Adapter removal

Tips:
Trimmomatic doesn’t work well for short adapter sequences
clipping multiple adapters in one pass may not work well

Other options for adapter trimming:
Flexbar: http://sourceforge.net/p/flexbar/wiki/Manual/
Adapter detection & removal
Barcode detection, removal and read binning
Filtering reads with uncalled bases
Quality trimming and filtering
Length trimming / filtering
Cutadapt: https://pypi.python.org/pypi/cutadapt/
FASTX-Toolkit: http://hannonlab.cshl.edu/fastx_toolkit/seq
Seq_crumbs toolkit: https://bicinf.comav.upv.es/seq _crumbs/
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Removing SPIA adapters with Flexbar

Command

flexbar --adapters
Adapter.fasta --
adapter-trim-end LEFT
--min-read-length 60 —-
reads L2 10d.
l.raw.fastg —--reads?
L2 10d.2.raw.fastqg --
target -=
format=sanger --
adapter-min-overlap 7

Result:
Clip adapters

Filter reads with uncalled
bases

Remove any reads <60bp

@ 2. smcnulty@blade14-2-10: /gscmnt/chfE)/mitr@éb/smcauIty/INFOR...
Adapter removal statistics

Overlap removal: Full length:
1426360 1062690
808949 635324

Min, max, mean and median adapter overlap: 7 / 13 / 11 / 12

Output file statistics

Read file: L2_10d.spia_1.fastq
written reads 3991748
skipped short reads 239258

Read file 2: L2_10d.spia_2.fastq
written reads 3991748
too short reads 249235

Single read file: L2_10d.spia_1_single.fastq
written reads 194531

Single read file 2: L2_10d.spia_2_single.fastq
written reads 184554

Filtering statistics

Processed reads 8871244
skipped due to uncalled bases 20170 (12773 uncalled in 10085 pairs)
short prior adapter removal ]
finally skipped short reads 488493

Discarded reads overall 508663

Remaining reads 8362581  (94% of input reads)

Flexbar completed adapter removal.

Quality trimming & filtering with Trimmomatic

Command:

java —-jar ~/bin/trimmomatic-0.33.jar PE -phred33
L2 10d.spia 1.fastqg L2 10d.spia 2.fastqg

ILLUMINACLIP:Adapters.fasta:2:30:10
SLIDINGWINDOW:5:20 LEADING:20 TRAILING:20 MINLEN:60

Result

Clipping any remaining lllumina sequencing adapters
Clipping any bases from the end of the reads with quality score <20

Sliding window quality trim

Removing any reads that are <60bp after clipping and trimming

Program prints basic statistics to standard output
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Complexity filtering with seg-crumbs

Seqg-crumbs interleave fastq files
interleave pairs -o

L2 10d.1.fb-tm.fastqg
L2 10d.1.fb-tm.fastqg

Filter low complexity reads
filter by complexity -o

--paired reads --
fail drag pair
L2 10d.int.fb-tm.fastqg

Seg-crumbs de-interleave fastq files
deinterleave pairs -o

L2 10d.int.fb-tm-sc.fastqg

Quality control, reviewed

Quality trimming/filtering
Adapter removal
Quality trimming
Length filtering
Complexity filtering

Result: confidence in
sequence presented

O o 2. smcnulty@linusé '/gécmancZSZQ/mitrevalab/smcnulty/lNFORMATIéS,CLASS/...
@HWI-ST495:145248488 : C49CBACXX:5:1110:9508:12004/1

AAA

+

HHHJ J JHFDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
BDD

@HWI-ST495:145248488 : C49CBACXX:

ATCCGTCTATTTATATATATATATATATATATA

AAAAAAAAAAAAA

+

CCCFFFFFHHHFHFGHF GHHGHFEGEFHEHGGH4<B+<E8DHIJJFDDDDDDBDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDD

@HWI-ST495:145248488:C(49CBACXX:5:1110:9118:12891/1

AAA

+
HHHJJ JHFDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DDD

@HWI-ST495:145248488: C49CBACXX:5:1110:8627:13632/1
GTTGCTTACCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAA

+
@@CFFFDDHFHGHIJIIJ1JJJJJHFDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDBDDDDDDDDDDBD@BBBDDDDDDBD
DDDDBB@DDDDDD

@HWI-ST495:145248488: C49CBACXX:5:1110:20682:13550/1

AAA

+

DFFIGEHFDDBDDBBBBD6BDDBDDDDDDDDDDDDBDDDDS<BDDDDBBBDDDDDDBE; BD@; ; B>BBBBDDDDD@BBDBDDDDDDD

Before QC:

“] Per base sequence quality

filumina L

coan
w
2:

T 2 3 4 5 6 7 8 5 1519 220 30 4549 5559 0568 7579 8559 9509
P

After QC:

Q Per base sequence quality

Qualty

e

T2 3 & 5 6 7 8 8 1518 2508 538 4548 5550 6580 7579 569 6599
Postion in raad (bp)

O
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Contaminant filtering

Do | need to do contaminant
filtering?

* Questions to consider:
* Where did my worm live?

* Is the host’'s genome
available?

* If not, what’s the next best
thing?
* Is my worm easily isolated from
its host?
* What does my worm/host eat?

* Is my worm easily rinsed/
cleaned?

*  What do you expect to see?

Contaminant filtering with Bowtie2

+  Bowtie for mapping when splicing IS NOT a consideration

«  SILVA rRNA: http://www.arb-silva.de/

+ “SILVA provides comprehensive, quality checked and regularly updated
datasets of aligned small (16s/18s, SSU) and large subunit (23s/28s,
LSU) ribosomal RNA sequences for all three domains of life”

+ Bacteria
+ GenBank bacterial database
+ Custom database (human microbiome project)

Ly I I T — e s — e S
—_— = == = [ . S .
e — — e e e ) e
Resource: http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml Q
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Contaminant filtering with Tophat2

» Tophat for mapping when splicing IS a consideration
+ Bowtie aligns reads that fall neatly within exons
+ Tophat splits reads across introns/gaps

+ Databases
* Human
* Host
* Intermediate
+ Definitive

* Sources
+ Genbank / Refseq
* Ensembl.org

Resource: https://ccb.jhu.edu/software/tophat/manual.shtml Q

Remove contaminant reads

* Index database
° bowtie2-build Pig.fasta Pig.fasta
*  Map with bowtie

° bowtie2 -x Pig.fasta -1 L2 10d.l.fb-tm-sc.fastqg -2 L2 10d.
l1.fb-tm-sc.fastg —-S MapPig.sam

*  Map with tophat

* tophat2 -o L2 10d Pig.fasta L2 10d.1l.fb-tm-sc.fastg L2 10d.
l.fb-tm-sc.fastqg

»  Counting mapped reads
+ For BAMfile: samtools view -c -F 4 accepted hits.bam
* For SAMfile: samtools view -c¢ -S —-F 4 MapPig.sam

+ Remove contaminant reads and their mates as before
*  Result:

* High quality base calls
¢ Confidence in the source of the reads

Resource: https://broadinstitute.github.io/picard/explain-flags.html (explanation of sam flags) Q
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Results of quality control

Count the number of reads maintained at each step!

reads to isoforms

{

Table of read
counts per isoform
or exon

A4

Table of read counts
per gene

transcriptome

\

find —-name “*l.clean.fastqg” | xargs wc -1
Divide line count by 4 to get fastq entries
Downsampled read set:
Raw pairs 4,435,622 | 5,511,063 | 4,817,349 | 5,891,002 | 5,644,329 | 3,337,590 | 4,258,806 | 33,895,761
Flexbar 3,991,748 | 4,878,344 | 4,298,728 | 5,270,820 | 5,009,942 | 2,530,803 | 3,826,835 29,807,220
Trimmomatic 3,110,420 | 4,007,562 | 3,385,936 | 4,226,000 | 4,165,397 | 2,220,509 | 3,021,273 | 24,137,097
SeqCrumbs 3,093,078 | 3,917,497 | 3,373,150 | 4,183,440 | 4,113,913 | 2,219,777 | 3,011,416 23,912,271
Contaminants 2,696,239 | 3,643,862 | 3,350,928 | 3,927,395 | 3,926,103 | 2,211,368 | 2,993,460 22,749,355
% maintained 60.80% | 66.10% | 69.60% | 66.70% | 69.60% | 66.30% | 70.30% 67.10%
Full read set:
Raw pairs 43,592,929|54,459,409(47,371,505|58,231,629(55,800,467|32,809,672(41,902,924| 334,168,535
Flexbar 39,229,484|48,195,339(42,272,646|52,090,873|49,524,734|24,877,392| 37,657,504 | 293,847,972
Trimmomatic 30,586,411/40,437,016| 33,302,203 | 42,655,938 41,935,364 21,862,295|29,745,662| 240,524,889
SeqCrumbs 30,416,334(39,426,83633,176,521[42,179,989|41,354,287(21,854,889|29,648,071| 238,056,927,
Contaminants 26,501,312) 36,740,860 32,956,606 39,675,217|39,508,530(21,780,296 (29,469,388 226,632,209
% maintained 60.79% 67.46% 69.57% 68.13% 70.80% 66.38% 70.33% 67.82%
O
RNA-seq analysis overview
RNA sequencing and
read cleaning
\
Genome _l RNA-Seq dataset(s) I_ No genome
available available
A 4 A 4
Isoform - Map RNA-Seq reads de novo transcriptome
reconstruction [ to genome assembly
A 4 A
Map RNA-Seq Map RNA-Seq reads to

Table of read counts
per transcript or gene
model

Downstream analysis (differential gene expression,
clustering, PCA, functional enrichment, etc).
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Section 2: Transcriptome
Module 1: Genome based RNA-seq analyses

1) Splice-aware alignment and verification
2) Genome-assisted transcript assembly
3) Counting reads in features for differential expression analyses

Resource:  http://www.nature.com/nprot/journal/v8/n9/pdf/nprot.2013.099.pdf

Where to find a reference genome

+ Sources: ematode.net
HelminthNet
Genbank/Ref M
°
enban erseq
Comparative Microblome
* Nematod t =
ematode.ne Goromics’ i
Home : top
+ Wormb Our Mission:
ormbase.or: Our Mission:
BEORFTE] Parasitic roundworms (nematodes) of humans, livestock and other animals cause
Registration closed for diseases of major socio-economic importance globally. They have a major, long-term
‘Bloinformatics Workshopfor  impact (directly and indirectly) on human health and cause substantal suffering,
Helminth Genomics. particularl in chidren. The World Health Organization (WHO) estimates that 2.9 billon
people are infected with nematodes. Furthermore, the current financial osses caused by
. [Mar.23.2015] parasites to agriculture woridwide (domesticated animals and crops) have a major impact
° R t - on farm profitability and exacerbate the global food shortage.
eq uirements: Announcing the Bioinformatics pr ty g o

Workshop for Helminth
Genomics! Being held on the

10th & 11th of September this Methods available for the control of the parasitic nematode infections are mainly based on
r. Click the link to find out chemical treatment (anthelmintics), non-chemical management practices, immune
+ Assembly fasta e s e o e
host and acquisition of anthelmintic resistance by an increasing number of parasitic
[Nov.12.2014] nematodes hampered what use to be effective and long-lasting control strategies.
Moreover, the use of such drugs poses major risks of residue problems in meat, milk and Haemonchus contortus
° The paper Heiminth.net: the environment.
‘expansions to Nematode.net -
tion tc
. . Trematode.net is now available Therefore, the challenges to improve control of parasitic nematode infections are multi-fold and no single category of information will meet them all.
online! However, new information, such as nematode genomics, functional genomics and proteomics, can strengthen basic and applied biological research
»  Functional annotation o s Anral genoios s roboni o STt b i oosod bt sy

or protein/cds fasta

[Sept.19.2014]

Nematode.net has grown again,
click here to learn more!

sustainable parasitic nematode control programs.

Bioinformatics Workshop for F

ept. 15.2014]
fvs s —— HI is now part of the L1 Bloinformatics Workshop for Helminth Genomics (10-11 September 2015) wil teach practical computational skils that should be of value
P me‘mm.m Lo o all nematode biologists. Whether you are an aspiring coder yourself, or you just want to better understand how data is processed from raw

click here to learn more!

sequence to a final result that supports an interesting story in a publication, this course is for you! Click the link above for more information.
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GFF3 format

[ [ ] 3. ec2-user@ip-172-31-38-111:~/WORKSHOP_RESOURCES/Section_2/module_1 (ssh)
[ec2-user@ip-172-31-38-111 module_1]$ head -n 25 D918.gff3
##gff-version 3
T_suis-1.0_Cont72 Final_set 74794 75765 . . ID=D918_GENE@@Q1:gene;Name=DI18_09719
.0_Cont72 Final_set 74794 75765 . . 18_GENE@@O1.1:mRNA; Parent=D918_GENE@@?1: gene ;Name=D918_09719
Final_set 74794 75765 . . 18_GENE@QO1. 1:exon;Parent=D918_GENE@@@1.1:mRNA
Final_set 74794 75765 18_GENE@@O1.1:CDS;Parent=D918_GENE@@O1.1:mRNA
Final_set 395444 417867 18_GENE@@O2 : gene ; Name=D918_08404
Final_set 395444 417867 18_GENEQ@02 . 1:mRNA; Parent=D918_GENEQ®QZ : gene ; Name=D918_08404
Final_set 395444 395926 .1:exon;Parent=D918_GENEQ0®2
Final_set 396038 396514 Il _( .1:exon;Parent=D918_GENEQ0O2
Final_set 396937 397314 .1:exon;Parent=D918_GENEQ®O2
Final_set 397730 397910 .1:exon;Parent=D918_GENEQ0O2
Final_set 398750 399097 .1:exon;Parent=D918_GENEQQO2
Final_set 417155 417867 .1:exon;Parent=D918_GENEQDO2
Final_set 395444 395926 18_GENEQ0Q2 .
Final_set 396038 396514 18_GENEQ@Q2 . 1:mRNA
Final_set 396937 397314 1D=D918_GENE@®@@2.1:CDS;Parent=D918_GENE@®QZ.1:mRNA
Final_set 397730 397910 1ID=D918_GENE@@@2.1:(DS; 18_GENEQ@Q2 . 1:mRNA
Final_set 398750 399097 18_GENEQ0Q2.1: H 18_GENEQ@Q2.1:mRNA
Final_set 417155 417867 18_GENE00@2.1: H 18_GENEQ@@Q2 . 1:mRNA
Final_set 633392 637389 . 18_GENEQQQ3 : gene ;Name=D918_05776
0_Cont17 Final_set 633392 637389 . . 18_GENE@@03 . 1:mRNA; Parent=D918_GENE@®@3: gene ;Name=D918_05776
.0_Cont17 Final_set 633392 633550 . . 18_GENE@Q@O3 . 1: exon;Parent=D918_GENE0OQ3
1.0_Cont17 Final_set 633607 633785 . . 18_GENE@@03 . 1: exon; Parent=D918_GENE0003
T_suis-1.0_Cont17 Final_set 633840 634033 . . ID=D918_GENEQ@@3.1:exon;Parent=D918_GENEQ®®3

+
+
+
+
+
+
+
+
+
+
+
+
+
+

Column 1: contig or scaffold
Must match the assembly fastal!
Column 3: feature
CDS, coding_exon
Column 9: mRNAs/genes the feature belongs to

Aligning reads with Tophat2

Commands:
bowtie2-build TopHat is a good tool for
. aligning RNA Seq data
D918.fa a ,:;n‘:e‘ﬁ";%i;ns compared to other aligners
C‘ to genome W (Mag, BWA) because it takes
3 splicing into account during
: the alignment process.
tophat2 -o -G '
D918.gff3 %9 QIILCIND - - « GEEDGENS
D918.fa ../module 0/ Spliced fragment
— - alignments
L2 10d. ===

l.clean.fastqg ../ . " -

Figure from: Trapnell et al. (2010). Nature Biotechnology 28:511-515.
module 0/L2 10d.
2.clean.fastqg

-G option:
“If this option is provided, TopHat will first extract the transcript sequences
and use Bowtie to align reads to this virtual transcriptome. Only the reads
that do not fully map to the transcriptome will then be mapped on the
genome. The reads that did map on the transcriptome will be converted to
genomic mappings (spliced as needed) and merged with the novel
mappings and junctions in the final tophat output”

O
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Counting reads within features with htseqg-count

+ Command:
* htseg-count —-f ba
-r pos -t CDS -1
Parent
accepted hits.bam
D918.gff3 >
L2 10d.htseqg.txt

*  Arguments

e -f: format
° sam or bam
e -r: order

* name or pos
+ -t feature type
+ coding_exon
* exon
- CDS
» -i: feature ID
+ Parent

m

read

gene_A

gene_A

gene_A

read

read read

genorAy | I

read
gene_A

read
gene_A

gene_A

Resource: http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

htseg-count output

L2_10d

D918 _00003 34
D918 _00007 0
D918_00013 273
D918 00014 24
D918 00015 345
D918_00016 1801
D918 00017 3091
D918 00018 706
D918_00019 3912
D918 00020 928
/!

alignment_not_unique 221176
ambiguous 268632
no_feature 2888141
not_aligned 0
too_low_aQual 0

« All values should be in

L3_16d
36
3
584
62
615
1672
3833
1680
3062
2060

839400
549686
5856583
0

0

tegers

13_17d
28
0
251
39
488
3838
4334
1252
1400
2012

567739
367069
3677885
0

0

union _strict _nonempty
gene_A gene_A gene_A
L gene_A no_feature gene_A
Qoo gene_A no_feature gene_A
Goe A gene_A gene_A gene_A
gene_A gene_A gene_A
gene_B
ambiguous gene_A gene_A
gene_B
ambiguous ambiguous ambiguous
gene B
—
L4_21d L5_42d L5_r163 L5_r179
42 112 163 297
0 97 5 25
372 417 144 232
90 337 381 517
404 638 298 415
1870 2614 1923 3446
4376 3333 2011 2954
2430 2285 737 1040
3638 3894 1643 1994
1971 3821 6971 3676
890856 1011380 465826 512410
470060 639345 330250 336040
4318280 5470650 2710622 3702874
0 0 0 0
0 0 0 0

intersection intersection

*  60-80% mapping rate is considered good
« Sum counts for all genes and divide by cleaned read pairs

Resource: http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
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Cufflinks: genome-assisted transcript assembly

Assembly transcripts for each cogom . .
sample separately using Cufflinks craas
—— —
cufflinks —-o CuffOUTPUT = =1
accepted hits.bam _ =
- =E
——
Create a file that lists the == -
assembly file for each sample =B
find -name ==
"transcripts.gtf" > [ e ——
. Contig 2 %
assemblies.txt S e g e

7

Run cuffmerge to create a single * Use gffread to print a fasta file of our transcripts

merged transcriptome annotation gffread merged.gtf —-g genome.fasta
cuffmerge —-g genome.gtf -w Transcripts.fa
—s genome.fasta + Options:

assemblies.txt

+ Creates an output called
merged.gtf

« -U: discard single-exon transcripts
* -M: collapse matching transcripts
« -K: collapse shorter, fully contained —

Resource: http://www.nature.com/nprot/journal/ tra nSCI"i ptS
v7/n3/pdf/nprot.2012.016.pdf

RNA-seq analysis overview

RNA sequencing and
read cleaning

\
Genome _l RNA-Seq dataset(s) No genome
available available
v
Isoform _ Map RNA-Seq reads de novo transcriptome
reconstruction [ to genome assembly
v \
Map RNA-Seq Map RNA-Seq reads to
reads to isoforms transcriptome
{ !

A4

Table of read Table of read counts
counts per isoform el F?;rrza;gounts per transcript or gene
or exon model

\ \

Downstream analysis (differential gene expression,
clustering, PCA, functional enrichment, etc).
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Section 2: Transcriptome
Module 2: De novo transcript assembly

1) Digital read normalization

2) De novo transcript assembly

3) Post-assembly filtering

4) Mapping raw reads to the assembly

Problems with de novo transcript assembly

L2_10d | L3 _16d L3_17d L4 21d L5 42d L5 r163 L5_r179

« Lots and lots of “puzzle
pieces”

+ Varying transcript abundance

%
‘ Alternative SpIiCing %
[m——  ———

« Differential gene expression

Resource: http://arxiv.org/pdf/1203.4802v2.pdf g
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Data reduction methods

much information?

* Wet-lab based cDNA normalization techniques
* Random down sampling
» Digital read normalization

Resource: http://arxiv.org/pdf/1203.4802v2.pdf g

Digital read normalization

+ Solution: “a computational algorithm that systematizes coverage in shotgun
sequencing data sets, thereby decreasing sampling variation, discarding redundant
data, and removing the majority of errors”

*  Method:
+ K-mer abundance correlates well with mapping-based estimates of read
coverage
+ K-mers tend to have similar abundances within a read since they originate from
the same DNA/RNA molecule

+ Estimate k-mer abundance (i.e., read coverage) to make the following
determination

for read in dataset:
if estimated_coverage(read) < C:
accept(read)

else:
Resource: http://arxiv.org/pdf/ q g
1203.4802v2.pdf discard(nead)
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Normalization software

«  Khmer: http://khmer.readthedocs.org/en/v1.4.1/

* Detailed protocol:
http://khmer-protocols.readthedocs.org/en/v0.8.2/mrnaseq/2-diginorm.html

+ Decide which reads need to be maintained
+ Trim off low abundance parts of high coverage reads (i.e., errors)
* Re-pair reads

*  Trinity implementation:
* https://trinityrnaseq.qgithub.io/trinity insilico normalization.html

+ For an explanation of the difference, see this blog post:
« http://ivory.idyll.org/blog/trinity-in-silico-normalize.html

De novo transcript assembly with Trinity

* Trinity approach
* Inchworm: assembles reads into unique sequences of transcripts, often
generating full-length transcripts for a dominant isoform, and reporting
unique portions of alternatively spliced transcripts

« Chrysalis: clusters inchworm contigs into complete de Bruijn graphs for
each cluster

- Butterfly: processes the individual graphs to report full-length transcripts for
alternatively spliced isoforms

*  Trinity command:

Trinity --seqType fg --max memory XXG --left AllLeft.fastqg
--right AllRight.fastqg --normalize reads —-output TRINITY

* Time and memory:
* Approximately 1G of RAM per million read pairs
» Approximately 0.5-1h per million read pairs

Resource: http://trinityrnaseq.github.io/ ( )
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Trinity output

Trinity will create a Trinity.fasta output file in the specified output directory

Trinity groups transcripts into clusters based on shared sequence content.
These clusters are loosely referred to as “genes” or “unigenes”. This information

is coded in the trinity accession.

Command:

perl ~/bin/
trinityrnaseqg-2.0.6/util/
TrinityStats.pl
Trinity.fasta

® 1. ec2-user@ip-172-31-38-111:~/WORKSHOP_RESOURCES/Section_2/mod...

[ec2-user@ip-172-31-38-111 TRINITY]$ head -n 25 Trinity.fasta

>TR11c@_gl1_il1 len=262 path=[240:0-261] [-1, 240, -2]
TAATCTGTTTTCGAAATGGTTTCTTCCTTTTTTCGTGGGTACCTACCAAGCAAAATGGAC
TGCACTTATCTTGCATTTCAAGCCATTCTAGAGCCTTATCGTCCGAAGAGCATATAGCTG
CTTAATAAGCGTTAATACTTCTCGGTCAGATGTTCCTGTTTGGTTCCCTTTATGCCTCTG
CTAAGCATTCAATAGTTTCATCATCGCTCTTTATTGCACGGCCTTCGTTTCCGCGAGCTG
AGCGGATGTCCTTGTCATACTG
>TR21c0_g1_i1 len=255 path=[233:0-254] [-1, 233, -2]
GGAAGCTTTAGGGGAAATAAATTTCGCTCGATTTTGCTCTACGCGTTATCCAACGAAGCG
TAGCATTTAGTTTGGGCATAAGTAAACATGCGAATCGAAATCTTTGCAGAAATGCTTTTT
GTGCATCTTACTGTTGTCCGCTAGCGCTGCATTAAAATCAAGTAACCTTGACAAGTTACT
TTGATTATGCTTGAATAATTTTTCTTTCGACTTAAACGTATATTATTAGTGTTGGCTGGT
CATTTAGCCTTTGAA
>TR31c@_gl_il len=418 path=[791:0-417] [-1, 791, -2]
GGTAACGCTTTGGGAACCCTTTTTCTTAATAAAGACTTTTGGTCCATCGTTTCAACGACG
CTACTTTATCTCTGTTGAAAAGTGAACAAAGATAAGATGGCGTCGCTCAAAAGGTGAAGC
TGTTGTTATCAGACAATCGATAATCCAATAAAAATGTTGATAGATTTTAAAAAGATACGT
GTGCGAGATAATTAAAATTTGCATAAAGTTACAAAGCAATCCCTCAGTGCTTCCTCTC
TGCCTTGCTGCAGCCTACGTGATTCACTTGCTAAGCCCTAAACCAATCAATGATGGAAGG
AAGCGCTTATTGTACCTTTGTCCTGACGTTTTTAGTCAGTTCGGAACTGTCCTTCCCTAT
ATCGCGTAGATTCAATATGAATAGTAGATTTGAAAGGTACGTCAATTTGATTTGCATA

Assembly statistics

“Test” assembly:

W
## Counts of transcripts, etc.
W

Contig
Contig
Contig

34

N10:
N20:
N30:
N49:

Total trinity 'genes': 48361
Total trinity transcripts: 74070
Percent GC: 45.

R T S T
Stats based on ALL transcript contigs:
R T S T

2736
2035
1646
1351

In a perfect assembly, “unigenes” = Contig

expressed genes

Why are there so many genes/
transcripts?

Fragmentation
Low-confidence transcripts

Contig N50: 1102

Median contig length: 557

Average contig: 797.01
Total assembled bases: 59034791

W
## Stats based on ONLY LONGEST ISOFORM per 'GENE':
B g o

Contig N10: 2265
Contig N20: 1676
Contig N30: 1302
Contig N40: 1036
Contig N50: 829

Median contig length: 451
Average contig: 648.84
Total assembled bases: 31378557
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Assembly filtering

+ Align reads and estimate abundance Paragonimus kellicotti assembly:

perl ~/bin/trinityrnaseq-2.0.6/ _mw

atil/ . #unigenes 153,461 59,050
align and estimate abundance.pl --

transcripts Trinity.fasta --seqType ¥ transcripts 251,721 91,029

fg --left ../AlllLeft.fastqg -- Ave 460 bp 563 bp
right ../AllRight.fastq -- transcript
est method RSEM --output dir RSEM slze
--aln method bowtie2 -- Alternative  24.8% of 24.4% of
prep reference splicing unigenes,  unigenes,
o ave 3.6, ave 3.2,
_ _ max 85 max 20
» Filter lowly supported transcripts P— 68.3% 66.3%
perl ~/bin/trinityrnaseg-2.0.6/ mapped
util/filter fasta by rsem values.pl
--rsem output=RSEM.isoforms.results
--fasta=../Trinity.fasta --
output=Trinity.filtered.fasta --
tpm cutoff=1.0 --isopct cutoff=1.00
Resource: http://trinityrnaseq.github.io/analysis/abundance_estimation.html Q

Feature counting for differential expression

*  Prepare reference
perl ~/bin/trinityrnaseg-2.0.6/util/
align and estimate abundance.pl --transcripts

Trinity.filtered.fasta --est method RSEM --aln method bowtie2
-—-prep reference

« Align reads and estimate abundance
perl ~/bin/trinityrnaseq-2.0.6/util/
align and estimate abundance.pl --transcripts
Trinity.filtered.fasta --seqType fg --est method RSEM --
aln method bowtie2 --left ../../../module 0/L2 10d.

l.clean.fastqg --right ../../../module 0/L2 10d.2.clean.fastqg
--output dir L2 10d

+ Join the abundance values for each sample into matrix for DESeq2

perl ~/bin/trinityrnaseq-2.0.6/util/
abundance estimates to matrix.pl --est method RSEM L2 10d/
RSEM.genes.results L3 16d/RSEM.genes.results ..

Resource: http://trinityrnaseq.github.io/analysis/diff_expression_analysis.html £
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Feature counting for differential expression

Cooperia punctata count table

HIGH.genes. LOW.genes. UntreatedA.genes. UntreatedB.genes.

results results results results
comp197262_c2 53.02 51.97 24 107
comp196358 c0 90 125 104 91
comp194909_c0 3 2 0 79.07
comp189445_c0 15 5 7 15
comp199614_c0 19 23 24 .67 18.89
comp191897_c2 16 20 26 3
comp196155_c1 223 283 119 467
comp196537_c0 74.2 98 38.67 200.96
comp194722_c1 11 6 1 33
comp200992_c1 9.24 21.98 27 1
comp189025_c0 57993.94 35917.49 21809.97 76141.69
comp195426_c0 32 7417 52.45 100.2
comp197998_c0 27 8 12 13
comp201556_c2 22 19 22 25

Resource: http://trinityrnaseq.github.io/analysis/diff_expression_analysis.html

RNA-seq analysis overview

RNA sequencing and
read cleaning

\
Genome_l RNA-Seq dataset(s) |—

A

No genome
available
y

de novo transcriptome
assembly

reads to isoforms

{

Table of read
counts per isoform
or exon

available
v
Isoform Map RNA-Seq reads
reconstruction to genome
v
Map RNA-Seq

A4

\

Map RNA-Seq reads to
transcriptome

\

Table of read counts
per gene

\

Table of read counts
per transcript or gene

model

\

Downstream analysis (differential gene expression,

clustering, PCA, functional enrichment, etc).

- K3 -


- 53 -


Section 2: Transcriptome
Module 3: Expression and differential expression

Introduction - Expression and differential expression

- For this module, we will be off of the server and working directly on your laptops.

- We will use data files that you downloaded using scp yesterday, which should be
saved in ~/Desktop/WORKSHOP_RESOURCES/Section_2/module_3/. Please check
that you have downloaded files and folders to this directory.

- Raw data was produced in the previous modules.

- You should already have both RStudio and MS Excel installed on your laptops, as
requested before the class started.
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Differential gene expression software

- Calling differentially expressed genes is a complicated statistical problem.

- “Dispersion” of a gene or a sample is used to estimate baseline (within-replicate)
variability, and is essential for accurate statistical measurement. Genes with high inter-
replicate variability should not be considered “differential”.

- Some measure of dispersion is calculated by all widely-accepted differential callers,
but they all calculate it in slightly different ways.

- Three software packages are primarily used: DESeq, EdgeR, and CuffDiff. Others
include SAMseq, baySeq, NOlseq, and EBSeq.

- DESeq and EdgeR are the two most commonly used differential gene expression
calculation packages. These produce similar overall results in terms of final gene lists.

How to choose a differential expression caller

- The primary practical difference between DESeq and EdgeR is sensitivity (i.e. the
number of genes called differential).

- If you are interested in transcript / isoform data, then use CuffDiff. CuffDiff tends to

be very stringent (fewer differentially expressed genes than DESeq or EdgeR).

- SAMseq can be useful for cross-sample differential expression calling, but should not
be used for two-sample comparisons.

- Having a larger set of differentially expressed genes is not necessarily better!

- More differentially expressed genes = more false positives, and a larger set of genes
to summarize for biological interpretation. L)

Fragment count

-
‘ u ffD Iff 1) Model cross-replicate fragment count
dispersion (negative binomial)

W Isoform A

- CuffDiff considers read counts per exon, and can  mes-ms—ms=  oome

Variance

Mean

identify significant changes in exon use and Y 2 Determine maximum-kelivood
isoform abundance for the same gene. oo o
- This is useful (a) for model organisms where isciomm A fssiorn 3

there is known functional significance for specific
exons/isoforms or for (b) for studies of a subset
of specific genes of interest.

No. of fragments

3) Model uncertainty in assignment
of fragments to isoforms
(beta)

Probability

25 50 75

- At a genome-wide level, quantifying differential |
exon usage complicates downstream analysis Noxof imgmeni fom ——
without providing practically useful data. JT N

- For example, it is difficult to perform genome- : .
wide functional enrichment testing on O Gt e cyexismarsion i s e el
differentially expressed isoforms, since multiple gt
isoforms from the same gene can contribute t0  conionx e o |l
enrichment scores. - B 3 |

Condition Y ——— 25 50 75

5) Test for signficance of changes between
conditions in transcript-level counts
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Replicate considerations
- At least triplicate is preferred for accurate analysis.

- Some samples may be lost due to very high variability from other replicates or low
quality RNA, so duplicate is risky (single-replicate produces unreliable statistics).

- Collecting the replicates by repeating an experiment at a later time almost never
works for helminth studies.

- Both DESeq and EdgeR can be executed with single replicates, but use different
statistical models.

- Another program called GFOLD is designed specifically for single-replicate samples,
but these comparisons with any software are not confident without additional
validation (e.g. gPCR of identified genes).

- Track metadata carefully whenever possible. E.g., the number of worms collected,
whether there is a possibility of having mixed samples (male and female, L3 and L4,
etc), time of sampling, etc. This may help to explain within-replicate variability in some
cases.

—

O

Gene clustering

- Another analysis approach is to cluster samples based on their overall expression
patterns across all available RNA-Seq datasets.

- While this is useful for grouping and classifying genes, the clusters only consider the
pattern and do not consider whether the genes are statistically differentially expressed.

- One tool called Short Time Series Expression Miner (STEM) clustering will also identify
over-represented patterns, representing clusters of probable biological significance.

STEM Clustering
= All Profiles (2) g@@

Clusters ardered based on number of genes and profiles ordered by significance (default)

=] [ 7; 3 [ i
“T'T X T val=

Mfuzz Clustering
Cluster 1 Cluster 2 Cluster 3 Cluster 4

il

0 30 70 110 160 0 30 70 110 1860 0 30 70 110 160 0 30 70 110 160

19 29

al

5
al

Expression changes
-3 -1 1 3

Expression changes
-3 -1 1 3
S |

Expression changes

Expression changes
301 103
L1l

o

—

Time Time Time Time ( ’
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Differential gene expression measurement

Experimental design considerations: What are the samples you want to compare? What
approach will you use to compare them?

Example 1: Treatment(s) vs Control
1A. Simple treatment / control pair:
Control «——> Treatment
- Which genes are high in treatment (upregulated) or lower in treatment (downregulated)?

1B. Control vs multiple treatments
(e.g. high and low doses of a drug treatment)

Control
«—>
Low High
Dose Dose
- Which genes are upregulated or downregulated by both treatments, and which ones are —
only differentially regulated by high-dose treatment but not low? L)

Differential gene expression measurement

Example 2: Tissue-based (unordered, multiple samples)

e.g. Whole-worm, intestine, pharynx, and male and female reproductive tissue.
2A. Each compared to whole-worm:

Pharynx \ / Male Reproductive

Intestine Female Reproductive

Whole worm

- What are the tissue-specific overexpressed genes relative to the whole-worm sample?

2B. Each compared to all other tissues:

[ Pharynx ]<—> Intestine, Male Reproductive, Female Reproductive

[ Intestine ]<—> Pharynx, Male Reproductive, Female Reproductive

- What are the tissue-specific overexpressed genes relative to the other sampled tissues?

2C. Cross-sample combinatorial comparisons

- Some cross-sample differential expression callers (e.g. SAMSeq) can identify combinations
of samples with upregulation (e.g. upregulated in both pharynx and intestine relative to other

tissues). L)
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Differential gene expression measurement

Example 3: Stage-based (time series) data
(e.g. L2, L3, L4, L5 larvae)

3A Pairwise : L2 €«——>|3¢——>L4<<—>L5

- Which genes are upregulated in one stage vs its
surrounding stage(s)?

3B Grouped : | L2 L3 L4 LS

- Which genes are upregulated in early stages relative
to late stages?

- Stages are treated as pseudo-replicates for each
other.

3C Individual : | L2 L3 L4 L5

L5 L2 L3 L4

Etc.

- Which genes are upregulated in one stage relative to
all others?

Using RStudio

05 07

0.3

0.1

= N w
o o o o

Component 2 (5% Variance)
o

-20

L2
L5B
L5A
L5C
L3B
L3A

L4

L2

oL5
oL5

oL3 eL5

oL4

-50 0 50

Component 1 (92% Variance)

100

€studio

- R is a free software environment for statistical computing and graphics.
- RStudio is a set of integrated tools to make R much easier to use.

- “Packages” of existing software can be downloaded, installed, and

loaded easily.

- Many bioinformatics tools (especially for statistics analysis) are

available exclusively in R.

- You can typically work with R by modifying existing scripts, most of
which can be downloaded from manuals or other internet resources.

- In this module, we will learn how to use R studio to:
- Install libraries, set the working directory and input files
- Run DESeq_2 for differential gene expression analysis

- Run PCA and hierarchical clustering

- Run GOSTATS for enrichment of differentially expressed genes

O
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Using
RStudio

- The RStudio

interface is
split into four
windows.

- If you only
download R,
then you will
only have the
console to
work with.

In selection Match case Whole word

1‘. Script Window
- Load, modify, and run commands

Regex () Wrap

6 source("https://bioconductor.org/biocLite.R") #Install biocLite, which c
7 source("http://bioconductor.org/biocLite.R") #You may need to run this v
8 biocLite("DESeq2")

10 #Install "ape" and "amap", used for clustering
11 install.packages("ape")
12 install.packages("amap")

14 #Install "GOstats" and dependencies, for functional enrichment testing
15 biocLite("GOstats")

16 biocLige("GSEABase")

17 biocLite("GO.db")

18 biocLite("org.Hs.eg.db")

& RStudio File Edit Code View Plots Session Build Debug Tools Window Help S 3 b N
(XX ] RStudio
Q- - =] &/ Project: (None) ~
37 Helminth_Genomics_Workshop_Script.R - ] Environment  History -
SourceonSave = & v - “#Run  ®% | “#Source = <% [ _ImportDataset~ ¥ Clear (&
write Next || Prev Replace || All ) Global Environment -

3. Environment
- Interactive list of
objects loaded

G0:0000012: chr "D918_00991"
G0:0000015: chr "D918_01967"
G0:0000036: chr [1:3] "D918_0018..
G0:0000045: chr "D918_07958"

Files Plots Packages Help Viewer. [ ]

21 Install @ Update )
Name Description V...

4. Packages /
Plots / Files

20 - Load and view
20 .
packages, view and

22 # set working directory (may need to be changed) #
23+ i .
120:85 | €3 (Untitled) * Rscript = SAVE plOtS, view files
Console ~/WU/Workshop/Input Files/GOSTATS/ -~ in current dlreCtory
amap  Another 0.8-
2- CO"SOle Multidimensional 14

o Analysis Package
- Output from running commands annotate Annotation for 144

1: Ln makevalldrarams(.upject) : microarrays

converting geneIds from list to atomic vector via unlist Annotati Annotation 1.28
2: In makeValidParams(.Object) : Database Interface
converting univ from list to atomic vector via unlist ape Analyses Of. 3.2
> Over <- hyperGTest (params) :cz:sgz:eucs and
> write.table(summary(Over), file="GOstats_output MF.txt", sep="\t")
aplpack Another Plot 1.3.C

& PACKage: stem.leaf,

An example of interacting with RStudio

® RStudio File Edit Code View Plots oyl Build Debug Tools Window Help N
200 RStudio
-2 B B S Restart R {+3F10
37 Helminth_Genomics_Workshop_Script.R @7 Untitled1* 1 Terminate R...
[ (JsSourceonSave = & /' - Set Working Directory > To Source File Location u
1 To Files Pane Location

Load Workspace...

Save Workspace As... Choose Directory... ~{t*H

- From the menu, select “choose directory” as shown above, to set the working
directory where files will be loaded from and saved to. Set to ‘~/Desktop/
WORKSHOP_RESOURCES/Section_2/module_3/ for this course.

Console ~/Desktop/WORKSHOP_RESOURCES/Section_2/Module_3/
>

> setwd("~/Desktop/WORKSHOP_RESOURCES/Section_2/module 3/")

- When you do this, you will see the “setwd” R command ran in the console. This can
then be copied and pasted in the script window.

= SourceonSave = O - |

1 setwd("~/Desktop/WORKSHOP RESOURCES/Section 2/module 3/")

- If you were to save this script in the future, you could now highlight and run this
command in order to set the working directory more easily.

O
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Installing R packages

- Now open the “Helminth_Genomics_Workshop_Script.R” file. This contains all of the
commands we will need for the workshop.

- Any information following a # sign is a comment to clarify what the code is for.

- First, we will install packages. Packages are either installed directly using
“install.packages()”, or they are loaded through bioconductor (“biocLite”).

- Highlight the code shown and click “run” to install all of the necessary packages.

- The manuals for different R packages will include the line necessary to install them.

- Installations only need to be performed one time on each computer, but the packages
need to be loaded every time R is restarted.

37 Helminth_Genomics_Workshop_Script.R

SourceonSave = O /v - ~% Run

1+ P P P P P P

2 # Install packages (only necessary the first time) #

4

5 #Install DESeq2, part of the biocLite package

6 source("https://bioconductor.org/biocLite.R") #Install biocLite, which contains DESeq2 as a tool

7 source("http://bioconductor.org/biocLite.R") #You may need to run this version, without the "s" in http

8 DbiocLite("DESeq2")

9
10 #Install "ape" and "amap", used for clustering
11 install.packages("ape")
12 install.packages("amap")
1LES
14 #Install "GOstats" and dependencies, for functional enrichment testing
15 biocLite("GOstats")
16 DbiocLige("GSEABase") p—
17 DbiocLite("GO.db") ( ,
18 biocLite("org.Hs.eg.db")

Loading R packages

- After you install packages, they will show up in the “Packages” list in your RStudio
sidebar. To “load” the packages in the future, you can simply check them off. When you
do, you will the package loading code in the console window.

- This code can also be pasted into scripts. Note that the full path is not necessary (e.g.,
in the screenshot below, you can just use library(“DESeq2”) instead, which will make
your script compatible on other people’s computers.

- Packages can also be searched and installed from this menu, but it is typically easier
to paste the install code from a guide.

Files Plots Packages Help Viewer .. [
©linstall | (@ Update (=

Name Description V...
~ | compiler The R Compiler 3.1.2
Package
datasets The R Datasets 3.1.2
Package
date Functions for 1.2-
handling dates 34
DBI R Database Interface  0.3.1
" | DESeq Differential gene 1.18.

expression analysis
based on the negative

1:1 (Top Level) = R Script * binomial distribution

DESeq2 Differential gene 1.6.3
Console ~/Desktop/Workshop/Module 3/ = expression analysis
> based on the negative
> library("DESeq2", lib.loc="/Library/Frameworks/R.framework/Versions/3.1/Resources/ binomial distribution
library") dichroma Color Schemes for 2.0-
> Dichromats 0

) dinact  Craata Cruntoaranhic N A 8
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Preparing and loading input files: DESeq analysis

- Almost all differential expression callers require raw reads as input.
- We generated read counts per sample from HTSeq output in the previous module.

- Open “tsuis_rnaseq_htseq_countstable.txt” from the DESeq directory (in MS Excel)
- This file contains unprocessed HTSeq count output (from the previous module) for T.
suis collected from different stages. All downstream work will be performed on this
dataset.

- Note that this is saved as a tab-delimited text file. This will be the standard output
from most linux programs. If you save in Excel, you will need to specify this format in
the “Save as” menu.

_ A | B | C \ D | E | F \ G | H
1 |Gene TSAC-10_day TSAC-16_day TSAC-17_day TSAC-21_day TSAC-42_day TSAC-Adult1- TSAC-adult_w
2 |D918_00003 34 36 28 42 112 163 297
3 |D918_00007 0 3 0 0 97 5 25
4 |D918_00013 273 584 251 372 417 144 232
5 |D918_00014 24 62 39 90 337 381 517
6 |D918_00015 345 615 488 404 638 298 415

- DESeq requires the genes to be listed in the first columns, the samples labeled in
the first row, and read counts in the matrix. This is standard to many of the other
differential callers (including EdgeR)

O

Loading input files

- After setting the working directory and loading DESeq, we load the input reads file.

- In R, “objects” are defined using an ‘arrow’ <-

- We will call the object for the HTSeq counts table “COUNTS”

- Itis important to understand the input command because (a) it is often omitted when
you download scripts (they assume you know how to do this) and (b) having the input
formatted or loaded incorrectly is a very common reason that scripts don’t work when

they are launched. Pay close attention to manuals describing input data.
Laaasas s
# DESEQ2 #
Laaasas s

#Set working directory
setwd("~/Desktop/Workshop/Module 3/DESeq/")

#Load library
library("DESeqg2") #DESeq

#Read INPUT READS table (1 row of headers with sample names and 1 column with gene names; Saved as tab-delimit
COUNTS <- as.matrix(read.table(file="tsuis rnaseq htseqg countstable.txt", sep="\t", header=TRUE, row.names=1))

l l | l L

Object Most typical Filename in Separator for Set to Omit if
name comr_nand for working the text file; Can  “FALSE” if there are
Loadasa loading data directory also be comma  there are no row
matrix object or space, but\t  no headers names
(not always (tab) is the most
necessary) common. L)
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Loading input files

- For DESeq, you will also need to prepare a metadata file describing your samples.
- This input file is formatted as shown below. Column names can be customized, but the
first column must contain sample names corresponding to the counts table.

= A I
1 |Sample ID Age Stage Comparison1 Comparison2
2 | TSAC-10_day_larvae-R182 10 L2 Early L2

3 |TSAC-16_day_larvae-R171 16 L3 Early Early
"4 |TSAC-17_day_larvae-R181 17 L3 Early Early
5 |TSAC-21_day_larvae-R165 21 L4 Early Early
6 |TSAC-42_day_larvae-R166 42 L5 Late Late
7 | TSAC-Adult1-r163 Adult L5 Late Late
8 |TSAC-adult_worms-R179 Adult L5 Late Late

- The samples that you want to compare should be grouped in one of the columns. Here,
we will focus on “Comparison1”, which is early larval stages vs late stages.

- You will need to construct this metadata file yourself prior to running R. We will look at
creating tables in Excel later in this module.

- Unlike the read counts table, this input command is not loaded “as.matrix”, but is just a
table:

#Read META DATA table (Sample names corresponding to input reads file down first column, c
META <- read.table(file ="tsuis_ rnaseq metadata.txt", sep="\t", header=TRUE, row.names=1)

—

O

Managing data

- In RStudio, loaded objects show up in the environment window.

- If you click on the table icon to the right of the object, you can view the object (in the
script window) to ensure that files have loaded properly.

- Checking to see if intermediate objects are empty (“NULL”) is a good way to
troubleshoot where problems are starting.

-] Environment  History = ]
9 | “Source ~ <% [o _#ImportDatasets 3 Clear (= List~

"} Global Environment ~

Data

) COUNTS Large matrix (68824 elements, 884.3 Kb) HH
ad text) .

() META 7 obs. of 4 variables J

down other col

)

stor", where 'S
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Running DESeq

- First, we will make “dds”, the DESeq DataSet object

#Make DESeq object ("design" refers to the column header in the meta data defining your comparison of interest)
dds <- DESegDataSetFromMatrix(countData=COUNTS, colData=META, design = ~Comparisonl)

{
l META dataset
Dataset we previously defined
name Header name META
DESeq command COUNTS dataset that we want to use
(loaded with package)  we previously defined for the comparison

- In some cases, there are secondary factors to consider. For example, samples may
have been collected in two batches, introducing potential variance independent of the
comparison.

- This data can be specified in the metadata file, and considered by DESeq using the
following syntax:

dds <- DESegDataSetFromMatrix(countData=COUNTS, colData=META, design = ~SecondaryFactor + Comparisonl)

- This is also useful in cases of paired samples (e.g., the same individuals before and
after treatment). DESeq and EdgeR can both utilize secondary factors, but CuffDiff and
other software cannot.

O

Running DESeq and saving results

- The following line runs the core DESeq code:

#Core DESeq code
dds <- DESeq(dds)
- Then, this summarizes the results, and writes the summary to a file:
#Results summary
res<-results(dds)
summary(res)
sink(file="Comparison2_Early vs_Late tsuis_deseqg2_results_summary.txt") #Define output file
summary (res)
sink(NULL)

The results are also shownin the console:

out of 9816 with nonzero total read count
adjusted p-value < 0.1

LFC > 0 (up) : 1988, 20%
LFC < 0 (down) : 1525, 16%
outliers [1] : 299, 3%

low counts [2] : 0, 0%

(mean count < 0.1)

- This shows that at an adjusted p-value of 0.1, ~36% of genes are differentially
expressed. —
- We will parse the output manually later, with a different p value cutoff. L)
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Running DESeq and saving results

- Next, we prepare the output data:

#Output results from target comparison (enter header name from metadata i
outputtable <- results(dds, contrast=c("Comparisonl", "Early", "Late"))

l

We will
save this _
object to a file Interpret Define Header First Second
in the next dds object comparisons name comparison  comparison
command as readable from the group name  group name
results META under the under the
file header header

- Finally, the write.table command is used to export the results to a file in the working
directory. We’'ll look at the results later, during the Excel tutorial.

write.table(outputtable, file="Comparisonl Early vs Late tsuis_deseq2 output.txt", sep="\t")

l l

Object Output Tab
name filename delimited
(try to be
descriptive)

Introduction to Microsoft Excel

- Excel is a spreadsheet program which is useful for organizing and visualizing data,
calculating statistics, and performing analyses.

- Today we will learn a variety of approaches for using Excel to work with whole-genome
data, with a focus on maintaining data integrity and organizing data in the most
accessible way possible.

- We will go from several raw data files (generated in previous modules) to a complete
database with functional annotation data, expression levels, differential expression data,
and more.

- Open “Module 3 Table Completed.xIsx” in the ‘Excel folder to view a copy of the
completed database, before we create it.

InterProScan data (Sept 11 2015) HTSeq output (tsuis_rnaseq_htseq_countstable.txt, Sept 11 2015) Gene
Gene Stage L2 L3 L3 L4 L5 L5 L5 Lengths Sta
InterPro domains Gene Ontology Terms Age (days) 10 16 17 21 42 Adult  Adult b Age
Sample Na TSAC-1( TSAC-1 TSAC-1 TSAC-2 TSAC-4: TSAC-A TSAC-g} (bp) Sar
v s v v |[w v v v v v v v v | |[w w!|[w
D918_00007 |- - 0 3 0 0 97 5 25 369
D918_00013 |IPR018468:Double-strar - 273 584 251 372 417 144 232 1230
D918 00014 |- - 24 62 39 90 337 381 517 1059
D918_00015 |- - 345 615 488 404 638 298 415 1341
D918_00016 |IPR018972:Something ¢ GO:0005634:Cellular C 1801 = 1672 3838 1870 2614 1923 = 3446 1410
D918 00017 |IPRO00793:ATPase, F1/ GO:0046034:Biological 3091 3833 4334 4376 @ 3333 2011 2954 1860
D918_00018 |IPR001841:Zinc finger,  GO:0005515:Molecular 706 1680 1252 2430 2285 737 1040 660
D918_00019 |- - 3912 3062 1400 3638 3894 1643 1994 1806
D918_00020 |IPR008974:TRAF-like:1. GO:0005515:Molecular 928 2060 2012 1971 3821 6971 3676 2682
D918 00021 |IPR011989:Armadillo-lik GO:0005515:Molecular 772 1395 1202 1287 1159 852 883 1983
D918_00022 |IPR004947:Deoxyribon. GO:0004531:Molecular 32 422 533 4792 25899 9485 12312 1065
D918_00023 |- - 0 16 25 45 278 1213 315 195
D918 00024 |IPR021869:Ribonucleas GO:0004531:Molecular 72 565 679 = 3744 15520 3983 9318 1344
D918_00025 [IPR006990:Tweety:8.7e - 523 872 989 1024 922 1377 673 1059
D918_00026 |- - 960 2019 847 1410 1032 352 363 348 | —
D918_00027 |IPR017441:Protein kina: GO:0005524:Molecular 416 383 435 220 450 427 338 |: 741 L )
D918 00028 |IPRO00719:Protein kina: GO:0004674:Molecular 2406 3518 1893 2507 @ 4375 1455 1547 1188
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Introduction to MS Excel: Formulas

- The spreadsheet is laid out in a coordinate system of “cells” with lettered columns and
numbered rows. Numbers or string can be entered into any cell just by typing and
pressing enter.

- Navigate the spreadsheet using either your cursor or by using the arrows on your
keyboard. Multiple cells can be highlighted with the keyboard by holding shift and
scrolling with the arrows.

- Formulas can be entered in any cell by entering an “=* sign.

- All formulas follow a specific format of the “=* sign, the formula name, an open bracket,
variables, and a closed bracket.

- As you type a formula, a yellow box will pop up to tell you what variables can be
entered. Here, | am calculating the average of a series of numbers, in cell B2. The
yellow box indicates that | should enter the numbers with commas in between:

AVERAGE i1 @ fx| =AVERAGE(1,2,3,4
el A gl ¢ | Db | E
=AVERAGE(1,2,3,4
3 AVERAGE(numberl, [number2], [number3], [number4], [number5], ...)
a

- After you close the bracket and press enter, the cell value will show the result of the

formula, but the formula bar will show the formula itself, when cell B2 is selected:
B2 =N fx| =AVERAGE(1,2,3,4)
4 A B C ] —~

L)

Formulas in MS Excel

- Formulas can also be calculated on references to cells containing numbers. This is the
same formula, but the numbers have been replaced with references to cells containing
numbers:

AVERAGE SN %) fX‘ =AVERAGE(A2,A3,A4,A5
I A g ¢ | b | E
[ 2 1 1]=AVERAGE(A2,A3,A4,A5
3 2 AVERAGE(numberl, [number2], [number3], [number4], [number5], ...)
7 3
5 4

- Rather than list all of the cells, cell ranges can be used. This follows the format of the
first cell, a colon, and then the last cell:

B2 t| @ © [ fx| =AVERAGE(A2:A5)
A | | Cc |

U1 B WILS| =
fala i

B WN =

- Ranges can span columns and rows (e.g., take the average of a large table).

- Cell references do not need to be typed in manually. You can select the range with your
mouse, or you can use the keyboard to select it, after typing the formula and opening
the bracket.

- A full list of Excel formulas can be found here: g
http://www.techonthenet.com/excel/formulas/
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Working with large datasets

- Open ~/Desktop/WORKSHOP_RESOURCES/Section_2/module_3/Excel/
tsuis_rnaseq_htseq_countstable.txt, in Excel.

- This is a large table, with 9,833 rows and 8 columns, but we are going to add more
columns as we build the database.

- If you hold down the “command” key on a Mac (3£) or the “CTRL” key on Windows,
and then scroll with your keyboard arrows, the selection will skip to the end of the table.
This becomes essential for highlighting all of the cells in a column in a large table, since
scrolling with the mouse can take several minutes.

- The first thing we will do is insert four empty rows above the dataset and one below
the headers, in order to make room to add more detailed descriptions.

- To do this, right click on the number on the left-hand border, and choose “insert”. New
columns or rows will enter a]bove I(rows]) to thle Ieftl(colulmns) of theI insertion point.

A E C |

A

o slufn-

Gene TSAC-10_day TSAC-16_day TSAC-17_day TSAC-21_day TSAC-42_day TSAC-Adult1- TSAC-adult_
K s % pi) 2 §iH 163 pi
. Cut #X —0 3 0 0 o7 5 2
] 273 584 251 32 417 144 23
| Copy #C o 62 39 90 337 381 517
1 Paste &8V a5 615 488 404 638 298 41€
i ; ~ 801 1672 3838 1870 2614 1923 344¢
3 PasteSpecial.. 38V 3833 4334 4376 3333 2011 2054
o 706 1680 1252 2430 2285 737 104¢
1 Insert 1912 3062 1400 3638 3894 1643 1994
3 Dl 928 2060 2012 1971 3821 6971 367€
H elete 772 1395 1202 1287 1159 852 882
3 Clear Contents 32 422 533 4792 25899 9485 1231
| 0 16 25 45 278 1213 31
| 72 565 679 3744 15520 3083 931€
2 Format Cells... #®1 523 872 989 1024 922 1377 67
2 ; 960 2019 847 1410 1032 352 368
E RowHeight.. 416 383 435 220 450 427 33¢ —
2 Hide 206 3518 1893 2507 4375 1455 1547 (
2 ! 32 17 57 27 482 603 754 )
2 Unhide 692 2083 948 1666 3079 323 981
267 D918_00031 507 574 848 463 1233 547 692

Sorting data in Excel

- The most important thing when working with these spreadsheets is to never sort the
data incorrectly. Not only will all of the results be wrong, but it will be very difficult to tell
that something went wrong.

- For this reason, you should never use “Data -> Sort” to sort your data. Instead, always
use the “filter” feature.

- In this example, | am highlighting (selecting) the empty row below my headers and then
clicking the funnel icon that says “Filter” below it (under the “Data” tab of the ribbon).

Sort & Filter Analysis External Data Sources Tools
7z IT o 3 = >y T - % Textto Columns 7]
A{} v v Q:I v ut ?v T v ? E I \_g E 1 == 0 v
Sort Fiter  PivotTable What-lf  Refresh  Text Database HTML FileMaker |I*) Consolidate Validate
A6 ] 0O (- |
| R—— B | © | D | E I F | G | H [ I | J
1
_2 |
_3 |
L4 |
5 Gene  TSAC-10_day TSAC-16_day TSAC-17_day TSAC-21_day TSAC-42_day TSAC-Adult1- TSAC-adult_worms-R179
| 6 — 2 2 = [= [= [=] [=] [=]
7 D918_00003 34 36 28 42 12 163 297
8 | D918_00007 0 3 0 0 97 5 25
D918_00013 273 584 251 372 417 144 232
Tn no40 NNN4 4 nA an 20 an 227 2041 BE47
- Once this has been clicked, small grey arrows will appear in the row that was
highlighted. (‘_)
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Sorting data in Excel

- When you click on these “sorting arrows”, you can choose to sort a column of your
choice, either ascending or descending. All of the data that is underneath an arrow will
sort with that data, every time. If you were to sort manually, it is up to you to select the
entire dataset every time, so this is the safe option to ensure data integrity.

Gene | TSAC-10_day TSAC-16_day TSAC-17_day TSAC-21_day TSAC-42_day TSAC-Adult1- TSAC-adult_worm:
- l v -
D918_00003 163 297
D918_00007 5 25
D918_00013 144 232
D918_00014 A . 7 . 381 517
D918_00015 >4 Ascending a4 Descending 298 415
D918_00016 1923 3446
D918_00017 By color: - 2011 2954
D918_00018 737 1040
D918_00019 Filter 1643 1994

no40 NnNnNnan an74 be T~ d~3

- Since we are going to add more data, we want the arrows to extend very far to the right
of the spreadsheet, so that new data will also sort. Excel will only let you add the arrows
to columns spanning any actual content, so scroll far to the right with the keyboard and
add a space with the spacebar to a cell in row 6 (for example, in cell EAG). Then, hold
shift and command/CTRL, and press left to scroll all the way back, highlighting all of the
cells along the way. With the entire row selected, press the filter button in the “Data” tab
of the ribbon.

- Now, as we add data to the table, all of it will be sortable and will stay organized.

- | do not recommend ever actually using the “Filter” functionality, since this hides _(_7
rows from view.

Formatting headers

- Descriptive, organized headers are essential for keeping your data organized,
communicating your data to others, and for keeping track of where results came from.

Stage L2 L3 L3 L4 L5 L5 L5
'Age (days) 10 16 17 21 42 Adult Adult
Gene Sample Name TSAC-10_day TSAC-16_day TSAC-17_day TSAC-21_day TSAC-42_day TSAC-Adulti- TSAC-adult_worr
E2 [+1] [ [ 2 2 2 > > v
D918_00003 34 36 28 42 12 163 297
D918_00007 0 3 0 0 97 5 25
D918_00013 273 584 251 372 417 144 232

- Start by inserting a column before the read data, and adding row labels for the
metadata. Always retain the original sample names from the raw data so that data can
be compared in the future.

- Next, in cell C2, type "HTSeq output (tsuis_rnaseq_htseq_countstable.txt, Sept 11
2015)”, because this is a complete, descriptive header for this entire set of columns.
Then highlight cells C2:J2, and click “Merge” under the “Home” tab of the ribbon:

HTSeq output (tsuis_rnaseq_htseq_countstable.txt, Sept 11 2015)

Stage L2 L3 L3 L4 L5 L5 L5
Age (days) 10 16 17 21 42 Adult Adult
Gene Sample Name TSAC-10_day TSAC-16_day TSAC-17_day TSAC-21_day TSAC-42_day TSAC-Adult1- TSAC-adult_worn
| [-1] [=] E é =2 (= é (=] =2
D918_00003 34 36 28 42 112 163 297
D918_00007 0 3 0 0 97 5 25
D918_00013 273 584 251 372 417 144 232

- This groups all of the columns together, while still allowing them to have separate
descriptions. Each set of data with more than one column should be formatted this ‘_)
way to keep it as organized as possible.
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Formatting headers

ayo

Layout

. v Arial [x]10 |v||A4| Az (| = | = B8l |abcY
- Use borders to box off the & con | bl jm AN EEE =13
headers and the different 1100 A& Outside Borders L
sections of data. To do this, S € AlBorders -
highlight a cell range, then oo "I Top Border ?
click the borders box in the Gene  age (day Bottom Border
“home” section of the ribbon. Lot Left Border %

- For database tables, “Thick
Box Borders” make it easier to
read. For any table that is to
be printed or published, the
thinner “outside borders” look
better.

- Reminder: Use
Command/CTRL + shift and
the arrow keys to highlight all
of the data to the very bottom,
to add borders to the entire
data block.

Formatting headers

0000000000000 00000000000000
© © © © © O W WO WO W WO WWWCWWOCWOCWOWOIWOWOWOWOWWO OO WO
P o o e e |
co]mlouloo[cuIooloolmIoolco]ooIoulco[culoolooImlmlm]mlmlm[almlmlmlmlm
[elelocNojolololoNolojololojoNolojololojoloNojooNoloNoNo]
[sEsNsNolsNoNoloNoNololoNololololololololoNololoNoNeNeNo]
CO0OO0O0O0O0O00O000O0O00O0O0O0O0O0O0O0O0O0OO OO0 QY
(AlmmwgwwwwNNNMNMNMNN—I—\—l—\—L—\—loO
© 0o O WN 20 O0OONODUPRWN-_0O0OONOOHWN W

-+ Right Border
~ No Border

=+ Inside Borders
Inside Horizontal Border
> Diagonal Down Border

Inside Vertical Border

/" Diagonal Up Border

= Top and Bottom Border

Bottom Double Border

== Top and Double Bottom Border
Thick Bottom Border

= Top and Thick Bottom Border
Thick Box Border

Border Options...

| 2158 5604 2429

- Finally, highlight your data, and use the font settings in the ribbon to make it more

readable.

- Choose Arial size 10 font, and center the data whenever it’'s not in a long string

format.
- Major headings can be bolded.

- Adjust the column widths by dragging from the edges of the column letters on the
outside of the sheet, so that they only use as much space as needed.

Edit Font Alignmer
ﬁ _ sl R v Ada [[10 [v][As] Az (| == B |abex
paste (A Cearv | B| I | U | |y & - Al EEB = &S
E15 10 @ (= fx| 3062

HTSeq output (tsuis_rnaseq_htseq_countstable.txt, Sept 11 2015)
Gene Stage L2 L3 L3 L4 L5 L5 L5
Age (days) 10 16 17 21 42 | Adult  Adult
Sample Name TSAC-1 TSAC-1i TSAC-1 TSAC-2 TSAC-4. TSAC-A TSAC-a
r ‘,t lv ‘ v ‘ v ‘ v ‘ v ‘ v ‘ v ‘ v

D918_00003 34 36 28 42 112 163 297
D918_00007 0 3 0 0 97 5 25
D918 _00013 273 584 251 372 417 144 232
D918_00014 24 62 39 90 337 381 517
D918_00015 345 615 488 404 638 298 415
D918_00016 1801 3838 1870 @ 2614 1923 3446
D918 00017 3091 3833 ' 4334 @ 4376 @ 3333 @ 2011 2954 N
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Freezing panes

- Under “Layout”, and then “Freeze Panes”, you can choose to ‘freeze’ all of the rows
above and all of the columns to the left of the currently selected cell.

- Doing this will lock the headers and gene names in place, so that when you scroll
through the table, you will always be able to see this critical data.

Page Setup View Print Window
e e 3 — ann ann - ann + oy
- 13 L~ = } [ s B B O & E E
0 7 4 | P EEE ELO. 5= R E B
Orientation Size Margins  Breaks Normal Page Layout Options Preview  Setup New [ 7 ' H
c7 AN XN Sfx | " Freeze Panes
| A [ B | C Y < Y RO O O RO O o N Freeze Top Ro
1 __ Freeze First Cc
2 HTSeq output (tsuis_rnaseq_htseq_countstable.txt, Sept 11 2015)
3 Gene Stage L2 L3 L3 L4 L5 L5 L5 Unfreeze
4 Age (days) 10 16 17 21 42 Adult  Adult b
5 Sample Name TSAC-1 TSAC-1i TSAC-1 TSAC-2 TSAC-4. TSAC-A TSAC-4| (bp) I
[ 7 | D918_01141 66638 4E+05 80241 4E+05 74722 5370 35162 969
8 D918_06007 77208 3E+05 73788 B8E+05 1E+05 19749 45750 975
9 D918_01949 2E+05 3E+05 4E+05 7E+05 94375 49435 1E+05 900

Adding additional data: Gene Lengths

- We will use the gene lengths to calculate FPKM values from the raw counts table.

- First, open up “gene lengths.txt” from the Excel folder, select the entire table, and copy
it to the clipboard.

- Now, go back to your main file and make a new “sheet” in Excel by clicking the + sign
on beside the tabs at the bottom. Paste the data into this second sheet, so that it doesn’t
paste mis-aligned into the main table. ?H tsuis_rnaseq_htseq_countstable. | Sheet2 / +E

- Add a header to your main table for where the new data will go.

- The “wrap text” font feature is helpful when the header name is long but the data will
not be wide. ' ' ‘ ‘ ‘ ‘ ' ' '

HTSeq output (tsuis_rnaseq_htseq_countstable.txt, Sept 11 2015) Gene
Gene Stage L2 L3 L3 L4 L5 L5 L5 Lengths
Age (days) 10 16 17 21 42 Adult  Adult (bp)
Sample Name TSAC-1( TSAC-1/ TSAC-1 TSAC-2 TSAC-4 TSAC-A TSAC-a] P
‘ A o, l v ‘ v ‘, L‘ ‘ v o, o, M o, \L \L
D918 01141 66638 4E+05 80241 4E+05 74722 5370 35162 | |
D918_06007 77208 3E+05 73788 B8E+05 1E+05 19749 45750

Why don’t we just sort the two tables by gene name and then copy and paste the
data?

- Because even if the same number of genes is present, we can’t necessarily trust that
every gene is present or entered in the same way.

- For example, in an updated genome draft, one gene can be removed and one new
gene can be added. The genes at the start and ends of the table will match, but there

will be mismatches for every gene in between these two. Any mistakes in a gene (@)
name will cause you reach false conclusions about your entire dataset.
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Looking up data in Excel with =VLOOKUP

=VLOOKUP is one of the most useful formulas in Excel, and allows for looking up
matching values in a Vertical reference list.

The syntax is:
= VLOOKUP ( [Value to lookup], [Table containing the value in the first column],
[column number to return], FALSE)

- In this case, we want to look up the gene length corresponding to each gene name in
the main table. We will start with the first gene, which is in cell B7 in this example:

runnany

] fx| =vlookup(B?,
| B | ¢ [DbJEJFJ]G[HI] 1 ]J Kineusel M [ N | o [ P
HTSeq output (tsuis_rnaseq_htseq_countstable.txt, Sept 11 2015) Gene
Gene Stage L2 L3 L3 L4 L5 L5 L5 Lenaths
Age (days) 10 16 17 21 42 Adult = Adult bg
Sample Name TSAC-1( TSAC-1 TSAC-1 TSAC-2 TSAC-4 TSAC-A TSAC-4 (bp) ] ] ]
v v | v vl v A v v v v A4 | A v
918_01141 66638 4E+05 80241 4E+05 74722 5370 35162 =vlookup(B7,
D918_06007 77208 3E+05 73788 B8E+05 1E+05 19749 45750 VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])
D918_01949 2E+05 3E+05 4E+05 7E+05 94375 49435 1E+05

- Type “=VLOOKUP(B7,” and then click to the second tab in your file containing the gene
lengths. Highlight this entire table using Command/CTRL+Shift and the arrow keys, and
then type a second comma. If you make a mistake doing this, just press escape and
start over. Then, click back to your main table, and finish the formula with “2” and
“FALSE” as the last two entries. J

Looking up data in Excel with =VLOOKUP

- This formula now identifies the gene length of the first gene (in cell B7) by referencing
the table in Sheet 2, cells B2:C9834, by matching the gene name in the first column and
returning the value in the second column. The last value of “FALSE” is necessary
because “TRUE” will allow approximate matches. This should always be false in all

cases for any scientific work.

v fx\ =VLOOKUP(B7,Sheet2!B2:C9834,2,FALSE)
\ | B [ ¢ [D|EJ[F ]G [HI] T [J [KEE
HTSeq output (tsuis_rnaseq_htseq_countstable.txt, Sept 11 2015) Gene
Gene Stage L2 L3 L3 L4 L5 L5 L5 Lenaths
Age (days) 10 16 17 21 42 | Adult Adult bg
Sample Name TSAC-1( TSAC-1i TSAC-1 TSAC-2 TSAC-4; TSAC-A TSAC-a| (bp)

v v v v el v v v v v v v
D918_01141 66638 4E+05 80241 4E+05 74722 5370 35162 969
D918_06007 77208 3E+05 73788 B8E+05 1E+05 19749 45750
D918_01949 2E+05 3E+05 4E+05 7E+05 94375 49435 1E+05
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Copying and pasting formulas in Excel

- Copy and paste the VLOOKUP formula to the cell below it, to look up the value of the
second gene. You can right click or use the menus to do this, but | recommend getting
used to Command/CTRL+C and Command/CTRL+V to do this.

- Note that in Excel, if you copy and paste a formula down one row, all of the cell
references in the formula also move by one row (also with columns). Here, we are now
looking up cell B8, to get the value for the second gene instead of the first.

- While this is useful, we have to be careful, because the cell references for the lookup
table of gene lengths (in sheet 2) has also moved down (from B2:C9834 to B3:C9835).

H fX‘ =VLOOKUP(B8,Sheet2!B3:C9835,2,FALSE)
| B [ ¢ [ Db | E[F[G[H[ [ J KT
HTSeq output (tsuis_rnaseq_htseq_countstable.txt, Sept 11 2015) Gene
Gene Stage L2 L3 L3 L4 L5 LS L5 Lengths
Age (days) 10 16 17 21 42  Adult  Adult bg
Sample Name TSAC-1I TSAC-11 TSAC-1 TSAC-2 TSAC-4. TSAC-A TSAC-a| (bp)
% v N \,_A v,‘ N v N v N v \_2
D918_01141 66638 4E+05 80241 4E+05 74722 5370 35162 969
D918_06007 77208 3E+05 73788 B8E+05 1E+05 19749 45750
NA18 N1949 2F+NR  3F+NAR  AF+NAR  7F+NR Q4375 409435  1F+NA”
- In order to fix this, we can use $ signs to “lock” the row references in place for the
lookup table.

- Any column letter or row number with a $ in front of it will not change when the formula
is copied and pasted.

- Return to the first formula cell and change the | —VLOOKUP(B7,Sheet2!B$2:C$9834,2 FALSE)
reference to B$2:C$9834, and paste that down. T~ T e T s T = T o T .

Filling and ‘clearing’ formulas

- We need to paste the formula down the entire column.

- Copy the formula, then scroll to the bottom of the table by command/CTRL+down on
one of the gene count columns.

- Starting at the bottom of the ‘gene lengths’ column, hold shift and command/CTRL and
press up, to highlight the entire column. Then, paste with command/CTRL+V.

- Now we have a|igned all of the gene |engths_ fput (isuis_maseq_htseq_countstable.txt, Sept 11 2015) Gene
o . K L2 L3 L3 L4 L5 L5 L5 Lengths
- The formulas are still “active” and will re-calculate o Je 7 2t 42  Adut adutf | =00
every time the table is sorted or the file is saved. - T
Enough of these active formulas will cause the R .
asie opecia
spreadsheet to slow down or crash eventually. 276
H “ ’ . . Paste
- We will therefore “clear” the formulas, leaving their " Al sing Source o
. usin ource theme 546
Va|ueS beh|nd : Formulas All except borders ?g;
- TO do thls’ hlghllght the entlre COIumn and Copy O\I:::'l:::ts :r?:::lr;:v:::iumberformats ;gg
(command/CTRL+C), and then within the copied Comments  Values and number formats a2
cells, right click and choose “paste special”. yelcaten - Heroe condonatfemating e
“ T . I ” Operation
- In the “Paste special” dialog, choose “values” and S oy s
then click “ok”. "~ Add Divide 606
Subtract ‘1‘32
p
Skip blanks Transpose gég
768
Paste Link Cancel ;?g
(o D I I | ﬁ?



- 71 -


Checking for formula errors

- Formulas in Excel can return errors. In the case of =VLOOKUP, if there is no lookup
value in the reference table, it will return #N/A’, indicating that there is no match in the
lookup table.

- All errors start with a # sign, so they can be searched easily.

- After clearing the formulas (previous slide), highlight the column and press command/
CTRL+F to search.

- If there is no match in this search, then all of the genes were matched up and there is
no problem.  xveienvnionva o

v v | v

381

9, g 3 189 Microsoft Excel cannot find the data you're

2 1 1 180 searching for.

3 1 2 252 If you are certain the data exists in the current sheet,

0 1 0 276 check what you typed and try again.

0 0 0 411

0 0 0 348

0 18 2 546 i
7 7 1 261

3 27 a 108 T | —‘—l;
4

1

i Find what:

1 #

1 Close

2

1 Replace...

0

0

33 Within: Sheet Match case

0 Find entire cells only

1 Search: By Rows

0

23 Look in: Formulas & | —
40 \
0 0 0 | | 768 |

Calculating FPKM values

- We can now calculate FPKM expression values from the raw read counts. Start by
copying and pasting the read count headers to the right of the gene lengths, and change
the title of the new header set:

HTSeq output (tsuis_rnaseq_htseq_countstable.txt, Sept 11 2015) Gene FPKM expression values
Stage L2 L3 L3 L4 L5 L5 L5 Lengths Stage L2 L3 L3 L4 L5 L5 L5
Age (days) 10 16 17 21 42 Adult ~ Adult b Age (days 10 16 17 21 42 Adult Adult
Sample Name TSAC-1( TSAC-1i TSAC-1 TSAC-2 TSAC-4 TSAC-A TSAC-3| (bp) Sample N: TSAC-10 TSAC-16 TSAC-17. TSAC-21 TSAC-42 TSAC-Ad TSAC-ad
~[ >l I= = v v - v = v [ - v - v - - v -

- FPKM = Fragments (counts from HTSeq) Per Kilobase (gene length / 1000) per Million
of reads mapped (the total read count in the sample’s column in the HTSeq data).

- This gene expression measure is used because it is normalized both for the gene
length and the library size, making the values directly comparable across the entire
dataset, and between different experiments.

- We can calculate all of this in a single formula. Start by dividing by the count by the
gene length as shown below:

HTSeq output (tsuis_rnaseq_htseq_countstable.txt, Sept 11 2015) Gene FPKM expressior
Stage L2 L3 L3 L4 L5 L5 L5 Lengths Stage L2 L3 L3 L
Age (days) 10 16 17 21 42 Adult  Adult (bp) Age (days 10 16 17 z
Sample Name TSAC-1( TSAC-1I TSAC-1 TSAC-2 TSAC-4. TSAC-A TSAC-a| P. Sample N: TSAC-10, TSAC-16 TSAC-17 TSA

34 36 28 42 112 163 297 891 =D7/(L7/1000)
0 3 0 0 97 5 25 369
273 584 251 372 417 144 232 1230

- Using parentheses organizes the formula to ensure that the order of operations is J
correct (i.e., we are not dividing D7 by L7 first, and then dividing by 1000).
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Calculating FPKM values

- Now all of this needs to be divided by (the library size / 1,000,000). So put the entire
existing formula in parentheses, and then divide by (the sum of the sample’s column / a
million):

fx| =(D7/(L7/1000))/(SUM(D7:D9838)/1000000)

Cc | o e |JFJ]G[H [T [J K] t M N RO P | Q[ R] S
HTSeq output (tsuis_rnaseq_htseq_countstable.ixt, Sept 11 2015) Gene FPKM expression values
tage L2 L3 L3 L4 L5 L5 L5 Lenaths Stage L2 L3 L3 L4 L5
\ge (days) 10 16 17 21 42 Adult  Adult bg Age (days 10 16 17 21 42
35ample Name TSAC-1( TSAC-1I TSAC-1 TSAC-2 TSAC-4, TSAC-A TSAC-g| (bp) Sample N: TSAC-10 TSAC-16. TSAC-17. TSAC-21 TSAC-
34 36 28 42 112 163 297 891 | 2.6339|

0 3 0 0 97 5 25 369
n79 A 4 n7Nn nnn EReloTal

- Verify this value to ensure that the formula is typed correctly (D918 00003 in L2 =
2.6339).

- We need to lock several things in place in order to copy and paste for the entire table.
First, the reference to L7 (the gene length) needs to move down, but not left-to-right, so
put a $ sign in front of the L but not the 7.

- Second, the “sum” range needs to be locked to the rows but not the columns. So
change that to D$7:D$9838, so that the columns move with the formula.

- The final formula should look like this:

. =(D7/($L7/1000))/(SUM(D$7:D$9838)/ 1000000) O

— — = — = = \

Aligning additional data

- Copy and paste this formula for the entire FPKM table, and then clear the formulas and
check for errors as shown previously.

- This normalized data will later be used as input for hierarchical clustering (in R), but for
now we will continue building the database.

- Open “secretion data.txt” in the “Excel” directory, and paste into the second sheet of
your database file as before.

- This data is output from two different programs (Phobius and SecretomeP)

- Create headers for the data in your main table:

FPKM expression values Secretion Data (Sept 11 2015)
L2 L3 L3 L4 L5 L5 L5 #TM Secreted Secreted
10 16 17 21 42 Adult Adult domains (phobius)  (SecretomeP)
I'SAC-10 TSAC-16 TSAC-17 TSAC-21 TSAC-42 TSAC-Ad TSAC-ad (Phobius) P

v v v v v v v v v v v

- Set up the =VLOOKUP formula for the first row and column:

fx| =VLOOKUP(B7,Sheet2!F2:19834,2,FALSE)
[ B U VB X [ Y ]

Secretion Data (Sept 11 2015)

Gene LS #TM Secreted Secreted

Adult domains 8
TSAC-ad (Phobius) | (Phobius) | (SecretomeP)
v

t v v

D918_00003 18.17] | 1|

Nna18 nnnn7 2ROR2

v - v

- This data needs to be pasted both down and to the right. Using $ signs, lock the
column of the gene name, and the entire table: =VLOOKUP($B7,Sheet2!$F$2:$1$9834,2,FALSE)
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Aligning additional data

- When pasting to the right, we also need to change the “2” to a “3” in the formula, to
return the value of the third column in the lookup table instead of the second.

- Also change this value to a “4” in the last column. Then, copy all three values and
paste down for the entire table, clear formulas, and check for errors.

a
v

fx | =VLOOKUP($B7,Sheet2!$F$2:51$9834,3,FALSE)

\ B u [V| w | X | | Z
Secretion Data (Sept 11 2015)
Gene LS # TM Secreted Secreted
Adult domains (phobius)  (SecretomeP)
TSAC-ad| | (Phobius) P

v il v v v v v

D918_00003 18.17 1]- |-

D918 00007 3.6932

- Now we will add an additional column, to indicate if each gene is secreted either by
classical or nonclassical secretion. This should be a “Y” if either of the other two columns
are a “Y”. We will use an =IF statement to perform this.

Secretion Data (Sept 11 2015)
#T™M Classically = Nonclassically
. Secreted
domains secreted Secreted (either)
(Phobius) (phobius) = (SecretomeP)
N~ v v A/
1 - - | |
0 Y -
0 - —

' O

=|F formula

=|IF is a very useful Excel formula for parsing data. The syntax is:

=IF( [A logical test returning true or false, usually =, <, >, or =>, <=], [value if true], [value
if false] )

- So for example, try entering =IF(1=2,"Yes”,”"No0”).

- This will return “No” in the cell, because the ‘logical test’ is false. If you change this to
1=1, then it will return “Yes”.

- Here, we need to check whether either of the cells beside the new column are “Y”. In
order to accomplish this we will use OR() in the logical test:

¢| =if(or(X7="y",Y7="y"),"y","-")

v w | x| Y AN  AA |
Secretion Data (Sept 11 2015)
#TM Classically = Nonclassically s
) ecreted
domains secreted Secreted (either)
id (Phobius) (phobius)  (SecretomeP) ]
v v v v v ‘v L
7 1 T - T - J=if(or(X7=“Y",Y7="Y"),"Y","-")
2 0 Y - T

- Copy and paste this formula, clear values, and check for errors before moving on.

Secretion Data (Sept 11 2015)
#TM Classically = Nonclassically Secreted
domains secreted Secreted (either)
(Phobius) (phobius)  (SecretomeP)
v v v -

1 - - - | —
0 % - Y (_)
0 - - -
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=COUNTIF formula

- In the empty ‘sorting’ row below your secretion header, use the =COUNTIF formula to
count how many genes are secreted according to each criteria.
=COUNTIF( [range of cells to count], [criteria for counting] )

#TM
domains
(Phobius)

secreted

“
4

Secretion Data (Sept 11 2015)
Classically = Nonclassically

Secreted

=countif(X7:X9838,"Y")

Secreted
(either)

[=NelNoloNo]

Y
Y

Y
Y

- Here, we are counting how many “Y” values there are in the column. Paste this to the
right to count for each criteria:

Secretion Data (Sept 11 2015)
#TM Classically = Nonclassically
. Secreted
domains secreted Secreted (either)
(Phobius) (phobius)  (SecretomeP)
v 863 |v 2676 |w 3539 |w
1 - - -
0 Y - Y
0 - - -
1 - - -

- This is an easy way to summarize your data. You can also check if values are greater
than zero ( “>0"), if values are larger than the value in another cell, etc. \—)
- =COUNTIFS (with an S) can check multiple criteria in multiple columns.

Annotation data (lookup with missing values)

- Open “interproscan_annotations_per_gene.txt” from the “Excel” file, and copy and
paste into the second sheet as before.
- Prepare the headers and use =VLOOKUP as before:

‘ =VLOOKUP($B7,Sheet2!$K$4:$M$6707,3|FALSE)

V| VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup]) A | AB | AC |
Secretion Data (Sept 11 2015) InterProScan data (Sept 11 2015)
#TM Classically = Nonclassically Secreted Gene Ontolo
domains secreted Secreted (either) InterPro domains Terms oy
bl (Phobius) (phobius)  (SecretomeP)
e v 863 |w 2676 |w 3539 |+ v v v
7 1 - - - #N/A .$4:$M$6707,3,Fé|
2 0 Y - Y

- This time there is an #N/A value because the lookup table does not contain
unannotated genes. Paste the formulas through, and then clear the formulas.
- Now, replace the #N/A values with “-”, to clean up the table.

- When long strings “hang” over into the next cell, add an
empty space in the column to the right, to cover it up:

InterProScan data (Sept 11 2015)

Gene Ontology

InterPro domains
Terms

v - v v

IPR018468:Doubl -

IPR018972:Some GO:0005634:Cell
IPR000793:ATPas GO:0046034:Biological Process: AT
IPR001841:Zinc fi GO:0005515:Molecular Function: pr

IPR008974:TRAF: GO:0005515:Molecular Function: pr
IPR011989:Armac GO:0005515:Molecular Function: pr
IPR004947:Deoxv GO:0004531:Molecular Function: de

-75 -


- 75 -


Parsing DESeq results

- Now we will add the DESeq results we calculated in RStudio.

- Open the “Comparison1_Early _vs_Late_tsuis_deseq2_output.ixt” file in the DESeq
folder, and paste it into the second sheet of the dataset as before.

- First, note that the headers are all shifted to the left by 1 column. Cut and paste those
to the right to fix this. This problem commonly occurs with R output (row.names has no
header entry), so always be sure to check for an empty final column.

baseMean  log2FoldChan IfcSE stat pvalue padj

D918_00003  102.244975 -2.2852271 0.54219132 -4.2147983
D918_00007 13.3896063 -4.7819266 1.08457881 -4.4090172

2.50E-05 0.00019566
1.04E-05
D918 00013 ' 310.784483 0.74493719 0.37667336  1.9776742 0.04796547 0.12076386

8.68E-05

baseMean log2FoldChan IfcSE stat pvalue

D918_00003 102.244975 -2.2852271 0.54219132 -4.2147983
D918_00007 13.3896063 -4.7819266 1.08457881 -4.4090172

From the DESeq manual:

The interpretation of the columns of data.frame is as follows.

padj

2.50E-05 0.00019566
1.04E-05
D918 00013 [T310.7844831 0.74493719 0.37667336  1.9776742 0.04796547 0.12076386

8.68E-05

id feature identifier

baseMean mean normalised counts, averaged over all samples from both conditions

baseMeanA mean normalised counts from condition A

baseMeanB mean normalised counts from condition B

foldChange fold change from condition A to B

log2FoldChange the logarithm (to basis 2) of the fold change

pval p value for the statistical significance of this change

padj p value adjusted for multiple testing with the Benjamini-Hochberg procedure (see the R function

p-adjust), which controls false discovery rate (FDR)

J

Parsing DESeq results

- We are only interested in the Log2 Fold Change and Adjusted P value, so delete the
other columns by right-clicking the column letters on the border and deleting them:

‘log2FoldChan padj
D918_00003 -2.2852271 0.00019566
D918_00007 -4.7819266  8.68E-05
D918 00013 074493719 0.12076386

- Set up these headers in the main sheet, and perform the VLOOKUP for these values,
then add two headers, for the average FPKM values from the two sample groups:

DESeq results (Early vs Late Larval; L2,L3,L4 vs L5)

Log2 Fold Adjusted P Average Average
Change value FPKM Early FPKM Late

v 4 v v

-2.2852271 0.00019566
-4.7819266  8.6841E-05
0.74493719  0.12076386

- Use =AVERAGE to calculate the average value of the sample groups, then paste the

formulas down and clear the formulas.

fx ‘ =AVERAGE(R7:U7)

R [ s | T [ U V [ W] X [Y Z | A | AB | AC [AD] AE | AF [e] AH_|
FPKM expression values Secretion Data (Sept 11 2015) DESeq results (Early vs Late Larval; L2,L3,L4 vs L5)
L2 L3 L3 L4 LS LS L5 #TM Classically = Nonclassically .
10 16 17 21 42 Adut | Adult domains | secreted | Secreted Se?t’he‘e" Lgiz Fold Adlusl“’d P F’:’,*}‘(’:Arzgel Fé&iﬂ“’fe‘
TSAC-10, TSAC-16 TSAC-17, TSAC-21, TSAC-42 TSAC-Ad TSAC-ad| | (Phobius) | (phobius) _ (Secretomep)  (&ither) ange value ary ate
ST 86

v v v v v v v|w

3 |v 2676 v 3539 (v [v

v v v

v

26339 1.6538 1.6941 2.0672 ] 4.6176 11.678  18.17 1
Q) Q) Q)

REERE) aaras nacr | 20292 n v

v

l

-2.2852271  0.00019566 |=AVERAGE(R7:U7)|

A 79100788 0 RQAAE NR \
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Parsing DESeq results

- We want to know whether each gene is significantly differentially expressed in either
early larval or late larval stages. Start by setting up additional headers:

DESeq results (Early vs Late Larval; L2,L3,L4 vs L5)

Log2 Fold = Adjusted P Average Average  Sig. Higher in Sig. Higher in
Change value FPKM Early FPKM Late Early Early

v v v v v v v

-2.2852271 0.00019566 2.01222465 11.4886605
-4.7819266 8.6841E-05 0.08319206 4.73819485
0.74493719 0.12076386 14.7543182 10.0696598
-2.7988517  7.828E-07 2.41819608 20.4226954

- We can see that a negative fold change corresponds to a gene that is higher in the late
stages than the early stages (and vice versa for a positive value).

- Therefore, in order to call a gene significantly higher in the early stages: (a) the fold
change value needs to be greater than zero, and (b) the P value needs to be less than a
threshold value of your choice.

- DESeq recommends a maximum threshold P value of 0.1, but we will parse more
conservatively, at 0.01 instead.

- For a very high-confidence small gene set, a threshold of 10-° could be used.

- Generally, 0.05, 0.01, or 10-° are used for publications.

- Fold change thresholds should not be used for RNA-Seq data. There is justification for
it with microarrays, but the high sensitivity of RNA-Seq data (and high abundance of
zero values) invalidates its use for statistical cutoffs.

O

Parsing DESeq results

- For the first column, use an =IF statement with an “AND” function to check whether
both (a) the Fold change value is greater than zero and (b) the P value is less than or

equalto 0.01: & " | AND(AE7>0,AF7 <=0.01),"Y","~"

D AiE(IogicaI_test, [value_if_true], [value_if_false]) l Al | AJ ‘ AK

DESeq results (Early vs Late Larval; L2,L3,L4 vs L5)

Log2 Fold = Adjusted P Average Average  Sig. Higher in Sig. Higher in
Change value FPKM Early = FPKM Late Early Late

v v v A g v v v

I -2.2852271T 0.00019566] 2.01222465 11.4886605 [=IF(AND(AE7>0,AF7<=0.01),"Y","")
47819266 8.6841E-05 0.08319206 4.73819485

- Repeat for the second column, but check if the fold change is less than zero for it.
Then paste the two columns down, clear the formulas, and check for errors.

- Paste the =COUNTIF formula from the secretion columns to count the differentially
expressed genes. Note that this doesn’t match the RStudio summary because we are
using a different threshold; At a 0.1 threshold, the counts do match.

DESeq results (Early vs Late Larval; L2,L3,L4 vs L5)
Log2 Fold = Adjusted P Average Average  Sig. Higher in Sig. Higher in
Change value FPKM Early FPKM Late = Early (0.01) Late (0.01)
r v v v v 746 M 1229 |»
-2.2852271 0.00019566 2.01222465 11.4886605 - Y
-4.7819266 8.6841E-05 0.08319206 4.73819485 - Y p—
0.74493719 0.12076386 14.7543182 10.0696598 - - ( >
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Analyzing data

- Look at the most significantly differentially expressed genes by sorting by P value
(A->Z), and then by one of the two categories (Z -> A):

DESeq results (Early vs Late Larval; L2,L3,L4 vs L5)

Log2 Fold = Adjusted P Average Average  Sig. Higher in Sig. Higher in

Change value FPKM Early FPKM Late Early (0.01) Late (0.01)

v v [wt | v v 746 |+ 1229 |+ [+] [+]

-10.644221 6.351E-130 2.53810914 5274.44293 - (]
-9.9884623 5.857E-110 0.92325578 1167.77682 -

-11.101479 3.3948E-90 0.52283999 1582.81916 - N <
-10.139221 4.3186E-86 3.75579835 5438.42184 - 74 Ascending a4 Descending
-7.6516894 8.9743E-86 1.71464222 411.035881 -

-8.516144 2.6986E-84 4.88351934 2208.58388 - By color:

-9.424408 1.6026E-80 2.74299774 2359.01521 -
-7.9488889 2.5898E-79 22.8418144 6760.78978 - Filter

- Scroll to the left to see the the InterProScan annotation data, which gives information

on the functions of these most significant genes:

InterProScan data (Sept 11 2015)

DESeq results (Early vs Late Larval; L2,L3,L4 vs L5)

. Log2 Fold Adjusted P Average Average  Sig. Higher in
InterPro domains Gene Ontology Terms Change value  FPKMEarly FPKM Late Early (0.01)
> = [ > ~ > ~ ZE

IPR003587:Hedgehog/intein hint, N-terminal:3.9e-10|IPF GO:0008233:Molecular Function: peptidase activity :7.
IPR008160:Collagen triple helix repeat:4.4e-09

IPR002486:Nematode cuticle collagen, N-terminal:8.8e-Z GO 0042302:Molecular Function: structural constituen
IPR002486:Nematode cuticle collagen, N-terminal:5.1e-( GO‘0042302*MoIecuIar Function: structural constituen
IPR003582:Metridin-like ShK toxin:6e-06

IPR002486:Nematode cuticle collagen, N-terminal:6.2e-* GO 0042302:Molecular Function: structural constituen
IPR014044:CAP domain:6.7e-05

IPR002181:Fibrinogen, alpha/beta/gamma chain, C-term GO 0007 165:Biological Process: signal transduction :7]

9.26599862 3.3309E-68 592.959089 0.92994857
723516711 2.9315E-65 130.369762 0.89935279
9.88458232 8.5452E-59 463.195311 0.44698347
7.14546039  1.6124E-54 133.441247 0.94641915
8.68270241 1121.30758 2.70186837
6.45614714  1.7596E-46 740.679087  8.8752889
10.2443388 6.7341E-46 1289.26298 0.83838701
11.0441962 2.0826E-45 957.416983 0.30801891
1.5752E-39 371.605534 26.0147455

L<<<<<<<<<

Saving data for clustering and functional enrichment testing

- For clustering, copy and paste the gene names and the FPKM values for each sample
into a new spreadsheet, then save as a tab-delimited text file. Renaming the long

sample names to shorter IDs will make the final cluste

A Home Layout Tables ]

Edit R
@~ Aval

Paste k// Clear v 4

Al = & fx| | i
: = 00 = L ¢ s Bommm =
ene L2 L3-A L3-f

2 L3A L3
D918_00269 | 772.466891 820503585 39 Favorites Name
D918_01117 | 143.603394 161.456635 12
D918_04680 | 938.796857 372.315888 3 >

Devices
> Excel
Q Macintosh HD

Tags:

19
D918_07748 | 155.584814 149.872533 16
D918 04072 | 1113.34902 1193.80603 3
D918_00632 | 1289.71495 638.429058 50
D918_03675 | 3334.22413 912.531386 59 .
D918_03042 | 2179.60549  653.73025 6 @ Remote Disc
D918_01398 | 418.806866 355.549064 3 ,
D918_02067 | 122.392947 57.4329723 41 Q RStudio-0.98.1091 2
D918_03041| 1109.89206 1101.72786 23 4
DO18704763| 189.35072 112.280266 43 Tagg >
D918_09311 | 1640.22775 400.973018 21
D918_06165 | 451.244311 114199896 1
D918 00378 | 12784193 164461632 22
D918_08709 | 250.44495 145495724 16
D918_07707 | 90.2441824 118.155338 11
D918_08313 | 452.146439 449.210991 43
D918_06276 | 222.937638  188.81346 17
D918_09351| 151.909233 88.1975048 87
D918_05569 | 36.6495913 53.8093102 44
D918_00149 | 69.6902897 61.6429036 26
D918_00194 | 848.757704 938.809064 18
D918_09752 | 27.1300296 34.7340707 35
D918_06723 | 2077.81106 652.281819 39
D918_09330 | 814.585645 603.968399 17
D918_06452| 15957369 219.967213 32
D918_00945 | 65.1384027 23.6265445 16
D918_03312 | 195.362425 289.553012 69
D918_02425| 364.26276 130.928849 11
D918_08707 | 1197.16884 560.741282 41
D918 09672 | 189.48799 186.703039 24
D918_09619 | 462.880587 757.273952 27
D918_08206 | 545.126581 240.168869 26
D918_08515 | 220.696169 327.907554 18

» [0 Old

i

=
i

=
o)

DESeq

> GOSTATS

[ original
[ Parsing GO

Format: Tab Delimited Text (.txt) | T

r look nicer:

Save As: FPKM_matrixI.txt ~

Module 3 < Q

~  Date Modified

Today, 4:32 PM
Today, 10:00 PM
Today, 4:47 PM

Today, 4:46 PM
Yesterday, 11:29 AM
Today, 4:46 PM

D918_07120| 205.265658  250.48748 1
D918_06825| 4455.11599 921.931958 13

] ] ] W] ] ] ) ] NS N NS NSNS NN NN N
oe| N| 6| U1| | | N| =] S| e o N| o wn| B | N[ =] S| | x| N

Description
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Saving data for clustering and functional enrichment testing

- For functional enrichment, we will need a “target” gene list of differentially expressed
genes. In the interest of time, we will just save the “higher in early” gene list. Sort the
spreadsheet by that column, then copy and paste all of the genes with “Y” values into a
new file, then save as a tab delimited text with no headers:

[ X J ™ Workbook3
Arial 10 |
27 L

A Home | Layout | Tables J

Edit Il Save As: tsuis_targetgenelist_higher_earlytxt ~ olt
@ Fil v Arial }
. Tags:
paste  (/ Clear~ Il Ble
At 1[0 0 & = m I
A . = ] = [ull=g:: Module 3 s Q E
D918701117 Favorites Name ~  Date Modified Size  Kir
D918_04680
- |po18 07748 ) > DESeq Today, 4:32 PM - Fo
D918_04072 Devices
7 > Excel Today, 10:00 PM - Fo
D918 00652 [Z) Macintosh HD
D918_03675 > GOSTATS Today, 4:47 PM - Fo
* |D91803042 )
*. |D918_01398 @ Remote Disc
21 |D918_02067 .
D918_03041 Q RStudio-0.98.1091 al” Old Today, 4:46 PM Fo
D918_04763 > original Yesterday, 11:29 AM - Fo
s e Tags > [ Parsing GO Today, 4:46 PM -~ Fo
D918_00378
= |Do1808709
D91807707
- |Do18_08313
- |Do18 06276
D91809351
D918_05569
D91800149
D91800194
- |D918 09752
D918_06723
= |D918709330
D918_06452
- |D918200945
* |Do18703312
U |D918_02425
D918_08707
D91809672
D918_09619
- |D91808206
D918_08515
= |D918_07120 5 imi =~
Dot8 06825 Format: Tab Delimited Text (.txt) | T
*|D918705085 Description
- |D91807630 ) .
(AL LY N N ——_————

PCA from DESeq results

- Principal component analysis (PCA) is one approach for visualizing how expression

patterns vary across samples.

- Go back to R and find the PCA code section.

- DESeq has a built-in tool for running PCA that utilizes the dds object created earlier.
HAHHAAA

# PCA #
#HHHHHH

#Log transform deseq object data
rld <- rlogTransformation(dds, blind=TRUE)

#Perform and plot PCA based on data from top X expressed genes (default 500)
plotPCA (rld, intgroup=c("Stage"), ntop=500)

- These commands log transform the data, and then plot the PCA.

- Note that “intgroup” can be any column of the metadata file. Here we use “stage” to
give more detail on each sample, as opposed to just the two categories in
“Comparison1”.

- “ntop” defines the number of genes to use to calculate the PCA. Using too many low-
information genes may add noise to the clustering. The default is 500, but the results are
generally not sensitive to changing the number.

—

O
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PCA from DESeq results

- After running these commands, the PCA plot will show up in the bottom-right panel.

- Clicking “Export” will allow you save this file. If you save as a PDF, you can edit the plot
directly in a vector-based image editing program (Adobe lllustrator, or “Inkscape”, which
is free).

- We will also export the plOt Files Plots Packages Help Viewer -
co-ordinates so that the data & zoom | EExport~ @ Clear Al

can be replotted in Excel later.

PC2: 5% variance

PC1: 92% variance

PCA from DESeq results

- The following code will save the PCA coordinates into a file so that the data can be
graphed in other programs, and outputs the variance of each component, including

those not shown on the plot.

#Output PCA coordinates
PCAcoordinates<-plotPCA (rld, intgroup=c("Stage"), ntop=500,returnData = TRUE)
write.table(PCAcoordinates, file="tsuis PCA coordinates", sep="\t")

#Output variance per component

rlogMat <- assay(rld)

rv = apply(rlogMat, 1, var)

select = order(rv, decreasing=TRUE)|[seq len(min(500, length(rv)))]

pca = prcomp(t(rlogMat[select,]))
sink(file="tsuis_PCA variances_ per component.txt") #Define output file
summary (pca)

sink (NULL)
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Hierarchical clustering in RStudio

- PCA was calculated directly from the DEseq dataset, but we will use FPKM values for
hierarchical clustering.
- Run this code to load libraries and prepare the input files:

HHHHAAA A
# CLUSTERING #
HHHHHFATHHAAAH

setwd ("~/Desktop/Workshop/Module 3/")

#Load libraries
library("ape") #for clustering
library("amap") #for clustering

#Input file - Usually FPKM values per gene, genes down the r¢
X <- read.delim("FPKM matrix.txt", header=TRUE, row.names=1)
#Transpose matrix (clustering takes genes in columns, sample
X <-t(x)

- If there is an error, check that the file names match.

- Next, we create a distance matrix. The statistic specified here determines the clustering
algorithm. Pearson or Spearman correlation is typically used for RNA-Seq data, and
“average” linkage is typically best for drawing the clusters:

#Create distance matrix, can use different clustering methods here instead (pearson, st
dist.mat<-Dist(x,method="pearson", diag = FALSE, upper = FALSE)

#Cluster distance matrix, can use different clustering methods (average, complete, sinc e
cluster=hclust(dist.mat, method = "average", members=NULL)

Hierarchical clustering in RStudio

- The script includes two approaches for viewing the clustering:

#Plot the cluster results with actual distances
plot(cluster)

#Plot the cluster with equal distances for each sample
plot(cluster,hang=-1)

Cluster Dendrogram Cluster Dendrogram

~
S 7| ~
o
N —
-
[te}
o w
o
‘E, -
s 2 =
%o o 2 4
2 o
i o T i
aQ ™
2 s |
-
- —
o § < S - ’7“
< O
[r] ro)
v} |

L4

9 8 5
- -

LsC
L3B
L3A

- You can export one or both of these as PDF for future reference.
- Finally, the script exports a newick-format file for input into other clustering programs
(e.g. FigTree or ITOL):

#Optional: Convert cluster plot to newick cluster file format for input to other =
my tree <- as.phylo(cluster) —~
write.tree(phy=my tree, file="tsuis rnaseq clustering pearson_average.newick") ( )

-81-


- 81 -


Functional enrichment using GOSTATS in RStudio

- Run the following to prepare the GO database:

HHAAHAAHAATAA A A TAA A AR A A
# Functional Enrichment (GOstats) #
HHAAHAAFAATAA AR AAAA A A A

setwd("~/Desktop/Workshop/Module 3/GOSTATS/")

#Load necessary libraries
library("GOstats")
library("GSEABase")
library("org.Hs.eg.db")

#Input gene to GO file (tab delimited, three columns: go_ID, evidence [always "IEA"], gene ID)
genetogo=read.table("GO_to_geneID.txt", sep="\t", header=TRUE)

#Process input GO file

goframeData = data.frame(genetogo)

goFrame=GOFrame (goframeData,organism="Trichuris suis")
goAllFrame=GOAllFrame (goFrame)

gsc <- GeneSetCollection(goAllFrame, setType = GOCollection())
frame = toTable(org.Hs.egGO)

- “Go_to_genelD.txt” is a pairwise GO and Gene list, generated from InterProScan
output in a different module.

- Producing this file is the difficult part about running enrichment on a custom genome.
Most tools (including GOSTATS) are designed to be easy to use primarily for model

organisms. L)

Functional enrichment using GOSTATS in RStudio

- Here we will input the complete (background) T. suis gene set, and our shorter target
gene set that we saved from Excel, based on the DESeq output:

#Input full gene list and test gene list (no header, just single-column gene name lists)
universe=read.table("tsuis_full gene list.txt", sep="\t", header=FALSE)
testgenes=read.table("../tsuis_targetgenelist higher early.txt", sep="\t", header=FALSE)

- The remaining code runs the enrichment test and produces output. It is ran three times,
one for Biological Process (BP), one for Molecular Function (MF) and one for Cellular
Component (CC) Gene Ontology terms. Run all of this code to produce the three output
files:

#BP

params <- GSEAGOHyperGParams (name="My Custom GSEA based annot Params",

geneSetCollection=gsc,

genelds = testgenes,

universeGenelds = universe,

ontology = "BP",

pvalueCutoff = 1,

conditional = FALSE,

testDirection = "over")

Over <- hyperGTest (params)

write.table(summary(Over), file="GOstats output BP.txt", sep="\t")
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Manual False Discovery Rate (FDR) correction

- Open the “GOSTATS_output_MF.txt” file in the GOSTATS folder (Using Excel).
- As with DESeq output, shift the headers to the right by 1 column:

GOMFID Pvalue OddsRatio  ExpCount Count Size Term
1 G0:0042302 1.29E-18 63 1.69414405 19 23 structural constituent of cuticle
2 GO:0017171 6.09E-14 6.51922057 7.51316058 33 102 serine hydrolase activity
3 G0:0008236 6.09E-14 6.51922057 7.51316058 33 102 serine-type peptidase activity
4 G0:0004252 1.46E-13 6.78484848 6.85023465 31 93 serine-type endopeptidase activity
5 G0:0008233 4.85E-13 3.62266637 20.2560702 56 275 peptidase activity
6 GO:0070011 1.66E-11 3.41863045 19.5194858 52 265 peptidase activity, acting on L-ami
7 GO:0005198 2.16E-11  3.90359153 14.3633952 43 195 structural molecule activity
8 G0:0004175 2.39E-11  3.75228763 15.5419302 45 211 endopeptidase activity
9 GO0:0003735 5.37E-06 3.36456279 8.32340339 23 113 structural constituent of ribosome

- The list is sorted by P value, with the most significant terms at the top. However, these
P values are not population-corrected, and this must be done manually for GOSTATS.

- We need to do correction because there are multiple tests being performed. A 5%
chance of being false is not acceptable when performing hundreds of tests.

- Generally, FDR correction is preferred for multiple-testing because it is a reasonable
balance of stringency. The most stringent approach is Bonferroni correction (multiplying
P values by the number of tests).

- For FDR, the most significant P value is multiplied by the number of tests. The second-
most significant P value is multiplied by the number of tests divided by two. The third-
most significant P value is multiple by the number of tests divided by three, etc.

O

Manual False Discovery Rate (FDR) correction

- This output file contains 314 tests. So the P values need to recalculated according to:
P value * ( 314 / [rank of P value] )

- We can accomplish this using the =RANK formula in Excel:

=RANK( [value], [range of all values], [0 = Largest first, 1 = Smallest First] )

s fx| =C2*(314/RANK(C2,C$2:C$315,1))
| B [ ¢ [ b [ E [ F [ &6 | H [
GOMFID Pvalue OddsRatio  ExpCount Count Size Term FDR
1 G0O:0042302 1.29E-18 63 1.69414405 19 23 structural con{___4.05E-16],
2 GO:0017171 6.09E-14 6.51922057 7.51316058 33 102 serine hydrold ~ 9.57E-12]
3 G0:0008236 6.09E-14 6.51922057 7.51316058 33 102 'serine-type pe  9.57E-12,

- The formula shown will calculate FDR-corrected P values in column |. The threshold
value (0.01) will be applied on these FDR values.
- Some additional formatting will clean up the table and make it ready for publication:

Table 1: Molecular Function Gene Ontology terms significantly enriched among genes upregulated in early larval stages compared to late stages

. Gene Counts FDR-
GOID Term Description Expected Observed Total corrected P
G0:0042302 structural constituent of cuticle 1.7 19 23 4.05E-16
GO0:0017171 serine hydrolase activity 75 33 102 9.57E-12
G0:0008236 serine-type peptidase activity 7.5 33 102 9.57E-12
G0:0004252 serine-type endopeptidase activity 6.9 31 93 1.15E-11
G0:0008233 peptidase activity 20.3 56 275 3.04E-11
GO0:0070011 peptidase activity, acting on L-amino acid peptides 19.5 52 265 8.71E-10
GO0:0005198 structural molecule activity 144 43 195 9.70E-10
GO0:0004175 endopeptidase activity 15.5 45 21 9.37E-10
GO0:0003735 structural constituent of ribosome 8.3 23 113 1.88E-04
GO0:0061134 peptidase regulator activity 6.7 17 91 8.71E-03
G0:0030414 peptidase inhibitor activity 6.7 17 91 8.71E-03
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Graphing in Excel

Not differentially expressed
© Upregulated in late larval

- Excel is a very useful program for 100000 ° Upregulated in early larval
graphing data, since graphs are

easily customizable and interactive.
- We will go through the steps
required to create a publication-
quality scatterplot image of the
previously-generated differential
gene expression data.

- Note that within excel, graphs are
called “charts”. Also note that Excel,

1000 -

(L5) (FPKM)

Average gene expression level, late larval stages

0.1
particularly on Macs, can

sometimes be prone to crashing

when working with graphs. Be sure 0.001 ¥~

to save frequently. 0.001 0.1 10 1000 100000
Average gene expression level, early larval stages

(L2, L3, L4) (FPKM)

- The points in a graph on it will stay linked to the data you enter. So, if data in the sheet
is re-sorted or changed, then the graph will automatically update. For this reason, we will
start by moving the data to be graphed onto a new separate sheet, where it won’t be

Changed |ater: 1 All Data“v MF Enrichmenti FPKM GraphDataA" +}- (—>

LR

Graphing in Excel

- Copy and paste gene names, and all of the DESeq data from the main data sheet into
the new graph data sheet.

- Delete the fold change and P value columns by selecting the entire columns (by
clicking the letters on the border of the spreadsheet) and then right clicking and “delete”.
This data is not required to construct the graph.

- Add the sorting arrows, then sort the sheet by ‘higher in early’ and then ‘higher in late’,
so that the three categories of differential expression are in blocks in the table:

Sig. Higher

Gene Average Average in Earl Sig. Higher
FPKM Early FPKM Late © 01)y in Late (0.01)
- v v

746
D918_00026 | 184.191624 76.7885724 Y
D918_00052 | 826.869376 50.5122168 Y
D918_00061 | 43.0357892  23.259435 Y
D918_00063 | 113.368905  57.237922 Y
D918_00092 | 65.2295686 31.4537095 Y
D918_00093 | 79.7689055 Y

54 Ascending #4 Descending

- Cut and paste this table into three sections: Higher in early, higher in late, and not
differentially expressed. This isn’t strictly necessary to construct the graph, but it is
helpful for organization. Copy and paste the headers to organize the data:

Higher Late Higher Early Not. Diff Expressed
Gene Average Average S'ﬁ]‘ g:alher Sig. Higher Gene Average Average S'i%‘ E!;g:lher Sig. Higher Gene Average Average S'i%‘ E!;g:lher Sig. Higher
FPKM Early FPKM Late © 01)y in Late (0.01), FPKM Early FPKM Late © 01)y in Late (0.01) FPKM Early FPKM Late © 01)y in Late (0.01)

D918_00003 | 2.01222465 11.4886605
D918_00007 | 0.08319206 4.73819485
D918_00014 | 2.41819608 20.4226954
D918_00023 | 5.09743301 179.170881
D918_00029 | 1.34108405 24.2946085
D918_00034 | 1.56275633 15.8094969
D918_00038 | 0.14974576 7.33730798
nata nnnanl N OR3RARIR 18R 4R7OR7

D918_00026 | 184.191624 76.7885724
D918_00052 | 826.869376 50.5122168
D918_00061 | 43.0357892  23.259435

D918_00013 | 14.7543182 10.0696598
D918_00015 | 17.3395579  16.177347
D918_00016 | 85.3995195  96.128585
D918_00017 | 106.959572 73.8053354
D918_00018 | 110.435852 94.7858156
D918_00019| 87.258974 65.8212612
D918_00020 | 31.9975026 97.6557965
na1’ nnn21 | 20 2nNRARR 24 3RAGRA1

D918_00063 | 113.368905  57.237922
D918_00092 | 65.2295686 31.4537095
D918_00093 | 79.7689055 26.3241948
D918_00102| 101.262191 49.5918198
na1’ nn113 | 97 1748317 4 1297310A

<< << <<=
<<<<<<<<
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Graphing in Excel

- We will start by graphing the “not differentially expressed” genes as an X-Y scatterplot.
- Use Shift + command/CTRL to highlight the FPKM data down this entire column. Then,
under “charts”, choose “scatter” and then “Marked scatter” (W|th no Imes)

NOT DIFFERENTIAL f ables r
Gene Average Average S'i%' E‘ algrlr;er Sig. Higher Insert,Chark InseriSpa)
FPKM Early FPKM Late in Late (0.01
d (001 oo il 2 e S & [ BN W
D918_00013 - T - - Column Line Bar Area Scatter Other Line Colum
D918_00015 | 17.3395579  16.177347 - - o7 s Cl -~ fel 1470 181020022 i
D918_00016 | 85.3995195  96.128585 - - [ A [ B | Scatter ]
D918_00017 | 106.959572 73.8053354 1]
D918_00018 | 110.435852 94.7858156 ﬁi
D918_00019 | 87.258974 65.8212612 i Gene
D918_00020 | 31.9975026 97.6557965 =
D918_00021 | 29.2008658 24.3899591 6 |
E D918_0000; Marked Scatter Smcuth Smooth Lmed

- When you do this, Excel will generate a simple plot of the data, as an object on the
sheet. Right click the empty white space on the plot, select “Move Chart”, and then
specify a “new sheet” instead, so that it puts the chart on its own sheet:

D918_10148 | 0.39593947| 4.9041985
D918_10149 | 145.996592| 224.349157

0| 72876449 61.3453485
16000 1] 10.0462212| 13.7844201
. 3| 1.35454041| 3.08418208
14000 4| 16.0583342| 18.219121
5| 0.36061911| 1.63453746 -
12000 + 6| nnatzancal 4 nsaancn
7 Move Chart
10000 8
9
8000 @seriest |30 Choose where you want the chart to be placed:
5
6000 & 2
* 5 .
2000 yS ; [ ] © New sheet: | FPKM scatter
2000 9
. g @ Objectin:  Shest3 B
0 5000 10000 15000 20000 25000 4
D918_10178 P
D918_10179
D918_10183 | earn how to move a chart Cancel | [Nl (
D918_10184
D918_10185

Graphing in Excel

- The default chart is not formatted nicely, and may vary by version of Excel.

- Note that the order of the following formatting steps doesn’t matter.

- First, we will add axes labels. Under “chart layout”, select “axis titles”, and then click to
add a title below the X axis and a rotated title on the Y axis:

Chart Layout
Labels

v‘ ool&~ uLIU v

Horlzontal AXIS Trtle : »

» P
Vertical Axis Title > DUU NRGEIF LIS

e

16000 - .ﬂ'l. Title Below Axis

Axis Title Options...

14000

- Click on the axes titles to change the labels to something descriptive, usually with units

in parentheses: : : : * :
5000 10000 15000 20000

Average gene expression level, early larval stages (L2, L3, L4) (FPKM)

- Next, click on empty white space in the corner of the sheet, to select the entire graph.
This will allow you to set a global font without adjusting each component manually. Arial
font is always acceptable for publication, so choose it, and choose size 16 font. This
large font size is necessary because graphs are rarely printed as a full page, but instead

—

are often shrunk into a single panel. L)
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Graphing in Excel

- Remove horizontal gridlines by clicking on one of them and pressing the “delete” key
(backspace on windows). Double-click on the plot area and under “line”, choose black
for the color instead of “automatic”. This will put a border around the plot.

16000

Format Plot Area
14000

[l Gradient  Weights & Arrows 12000

% Fill
Line Color: Automatic
SQhadnw

- We will now start to add the other two data series to

10000

(L5) (FPKM)
8
8

# Series1

Average gene expression level, late larval stages

the graph. : ¢
- Right click on the plot area and then click “Select data”. § ** 4 3.;: .
Select Data Source 00 : 5000 10000 15000 .20000 25000
Chart data range: | ESHEEE3ISOS7:5PS7863 e 00 Ignore this.

A list of the different series of data on
the graph. Each series can be
formatted independently.

Switch Row/Column

The name of the selected series. If
blank, it will default to numbering.

X values: =Sheet3!1$0$7:30$7863
C— Range of X values and range of Y
Y values: =Sheet3!$P$7:$P$7863 7 Values for the selected serles

- «——This only matters for graphs with { )
a categories (not numbers) on the x“axis.

Series Name:

I

I

Add Remove
Category (X) axis labels:

Graphing in Excel

- First, rename the existing series to “Not differentially expressed” (this is the data we
started the graph with).

- Click “add” to add a second series. Title the series (“Upregulated in late larval”), and
then click the red arrow beside the “X values” to select the x axis values for this series.

Series Name: ‘_ B
Not diff...xpressed X values: @
Series2

Y values: ={1} £

- Click back to the ‘FPKM GraphData’ tab, and highlight the X values (early larval) from
the “Upregulated in late larval” columns you previously set up:

740549 5 Y I |D918 00346| 141984195 35.5892882 Y
239337
460214 Select Data Source

3.28665

181699 ='FPKM GraphData'!$C$7:5C$1235

899067 = I Y DYIS_UU4UT | 1924371222 114211070
921122 - [ Y D918_00420 | 667.846387 141.436454 [
422876 - [ Y D918_00433 | 84.8841885 18.1606232
540214 Y D918_00443 | 73.5188456 32.5094046

hment | FPKM GraphData) FPKM scatter | Sheet3)7-i-—

- On windows, you can click on the first cell, and shift + CTRL down to select the entire
column. This doesn’t always work in the Mac version (a bug), so you may need to (‘_)
either select with the mouse, or type in the range manually.

<< <~
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Graphing in Excel

- Once the data is selected, press enter or press the red arrow to return to the main data
selection menu. Repeat this process to select the Y values, and then add another series
for the “Upregulated in early larval” data, and add those x and y values.
- When all of this is finished, click “ok” to return to the graph.
- Note that if an error pops up when entering data, it is probably because you clicked in
multiple places, and it is expecting a single range of values. If this happens, delete

everything in the white box, and then click the red arrow again.

Series Name: Upregulated in early larval %z
Not diff...xpressed X values: ='FPKM GraphData'1$1$7:$ &z
Upregul...te larval
Loeoiana ¥ values: ~FPKM GraphData!SJS7:5. -«

Add Remove
Category (X) axis labels: B
Hidden and Empty Cells
Show empty cells as:  Gaps | T
Show data in hidden rows and columns
Cancel  [LS08

- Click OK to finish the data entry.

Graphing in Excel

- Resize and reposition the legend and the graph
to reduce empty white space.

- We will format the axes so that they display log
values instead of natural values. Start by double-
clicking on any of the numbers on the x axis.

- In the “scale” menu, check “Logarithmic scale”.
You will get a warning that zero values cannot be
displayed, which we will address shortly.

- Set the “vertical axis crosses at” value to 0.001,
so that the axes intersect on the corner.

- Repeat both of these steps for the y-axis,
except for the y axis, also set the “major unit” to
100, so that it matches the X axis.

- Although we do not need it for this graph, note
that this menu is where you can manually set the
minimum and maximum values for the plot.

16000

* Not differentially expressed
= Upregulated in late larval
Upregulated in early larval

14000

12000

10000

(L5) (FPKM)

8000

6000
.

4000

*
2000 o

Average gene expression level, late larval stages

*
pL

[

*

* .

h d
*

"

*®

*

.

0

5000 10000

15000

20000 25000

Average gene expression level, early larval stages (L2, L3, L4) (FPKM)

":: Number

L, Ticks

/@ Font

1T Text Box

& Fill

\ Line

L Shadow

() Glow & Soft Edges

Horizontal axis scale
Auto
Minimum:

Maximum:
Major unit:
Minor unit:
Vertical
axis crosses at:

Display units: None

Logarithmic scale

Values in reverse order

0.001
100000.0
100.0
100.0
0.001

| T Show display ut

Base: 10.0

| Vertical axis crosses at maximum value

O
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Graphing in Excel

- Next, we will format the data series points. Start by double clicking on one of the “not
differentially expressed” points. Note that if you single-click, and then double-click, you
will be formatting a single point and not the entire series. Ensure that the popup
window says “format data series” and not “format data point”.

- Go to “Marker style” and choose a circle, then set it to size 4. We make these points
small because we want the differentially expressed genes to stand out.

- Now choose “Marker line” and choose “no line”. This is for the border around each
point which we don’t want for this series.

- Go to “marker fill’, and set to black with 70% transparency. This will make the points
translucent, making it easier to tell where they overlap. Click ok to finish formatting.

- Repeat for the two upregulated gene sets, except choose a size 5 circle, a black
marker line, and a solid fill with no transparency (orange and blue).

Format Data Series

[l Gradient Picture or Texture  Pattern

L Axis

%3 Order Color: I

¥ Error Bars

Transparency: 0 100 |70 z

\\ Marker Line

53 Marker Style

\, Line

L Shadow

[_) Glow & Soft Edges

| 3-D Format ( )

Graphing in Excel

- Now, we will fix the zero values. Rather than not including points with zero
expression, we want them to show up along the axis. We will do this by changing all
zero values in the graph data to 0.001.

- Go back to the FPKM GraphData tab, and press “command/CTRL + F” to bring up
the “Find” dialog. From here, click “replace”, and check off “find entire cells only”. Use
this to replace all zero-value cells with 0.001. The graph will auto-update since the cell

references are still linked. Not differentially expressed
. ° Upregulated in late larval
- Now, the points plotted along the axes ° Upregulated in early larval
100000
are zero-value, and not 0.001 as
indicated. This can either be mentioned
in the figure caption, or the 0.001 values 1000

can later be covered up in imaging
software and replaced with 0 on the plot.

(L5) (FPKM)
)

Average gene expression level, late larval stages

Replace
Find what: d
| __INC X
0
Close 0.1 1
Replace with:
0.001 Replace
Within: Sheet <] Match case Replace All
Find entire cells only 0.001 T T T
Search: By Rows
0.001 0.1 10 1000 100000

Average gene expression level, early larval stages
(L2, L3, L4) (FPKM)
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Graphing in Excel

- Finally, we will add a diagonal line to define where the x and y values are equal. To
do this, go back to the “select data” menu (right click the empty space on the graph).
- Now add another series called “Equal”. Manually type in the values 0.001,100000 to
both the x and y axis values, then click OK.

Series Name: ="Equal" &
X values: 0.001,100000 T
Y values: 0.001,100000] E

Add Remove

- Two points will show up in the corner. Double click one of them, then set the Marker
style to “no marker”, the “line” color to dark grey, and then click to the “weights &
arrows” dialog under the “line” menu. In that menu, set the weight to 2pt, and choose a
dashed ||ne Format Data Series

[ Axis Solid  Gradient | \Jk T ows
3 Order Line style
¥ Error Bars Style:
4 Marker Fill
\ Marker Line Dashed: == = = = — B
8% Marker Style
* Shadow

() Glow & Soft Edges

) 3-D Format

o Weight: 2
1]

Jointype:  Round B

Arrows

Begin style: — T] End style: —_—— =
G

Begin size: : End size

Graphing in Excel

- If “equal” shows up in the legend, click it and delete it.
- At this point, the graph is complete. This can be saved as a PDF file in the “save as’

menu, and imported as a vector-format image into other software.

Not differentially expressed
- You can make a copy of the graph o Upregulated in late larval

by right clicking the sheet tab at the 100000 ° Upregulated in early larval
bottom, and choosing “Move or
Copy...”, and then specifying to
create a copy. This way, if you make
a second scatterplot, you can just
change the series data, and keep
all of the formatting.

1000 -

Move or Copy

(L5) (FPKM)
)

Move selected sheets

Average gene expression level, late larval stages

. To book: 0.1
Insert Sheet OF1 Module 3 Table Completed.xIsx | T
, Delete N
p Rename efore sheet:
— | All Data 7
l Move or Copy... MF Enrichment 4
0.001  Select All Sheets FPKM GraphData 0.001 w ° w
Protect Sheet... FPKM scatter 0.001 0.1 10 1000 100000
AV 2 Color... B - - _
L. L{move to end) Average gene expression level, early larval stages
FPKMsca g0 i Create a copy (|_2, L3, |_4) (FPKM)

— —

Cancel | OK | L)
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Helpful resources for Section 2

List of RNA-seq bioinformatics tools:

« https://en.wikipedia.org/wiki/List of RNA-Seq_bioinformatics tools
khmer website and blog

* http://khmer-protocols.readthedocs.org/en/v0.8.2/mrnaseq/index.html
« http://ivory.idyll.org/blog/category/science.html

DESeq2

« https://www.bioconductor.org/packages/release/bioc/vignettes/DESeqg2/inst/
doc/DESeq2.pdf

e http://www.bioconductor.org/help/workflows/rnaseqgGene/
¢ GOstats

» https://bioconductor.org/packages/release/bioc/vignettes/GOstats/inst/doc/
GOstatsHyperG.pdf
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Section 3: Variome
Module 0: Re-sequencing genomes

Analysis of genetic variation is central to understanding population biology and
molecular epidemiology of helminth parasites. Studying genome variations within and
between populations can provide insights into geographical differentiation and gene flow,
transmission patterns and evolution of parasites. In addition, genome-wide association
studies (GWAS) and forward genetic screens (mapping-by-sequencing) can greatly
facilitate identification of genetic variants correlated with phenotypes of biomedical
interests (e.g., infection behavior, drug resistance, etc.)

NGS provides an unprecedented opportunity to characterize genetic variation in large
number of samples at a reasonable cost. Sequencing individuals at a high coverage is
the 'gold standard' for obtaining high-quality data, but budget constraints may require
alternatives for studying large populations. Reduced representation and pooled
sequencing approaches can be cost-efficient, but it is important to understand the
strengths and weaknesses of each method to strategically design your experiment.

The following modules in this section will help you understand how we can turn raw
sequencing data into reliable information about genetic variation.

Recommended reading:

DePristo, M. A, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl, A. A.
Philippakis, G. del Angel, M. A. Rivas, M. Hanna, A. McKenna, T. J. Fennell, A. M.
Kernytsky, A. Y. Sivachenko, K. Cibulskis, S. B. Gabriel, D. Altshuler and M. J. Daly
(2011). "A framework for variation discovery and genotyping using next-generation DNA
sequencing data." Nat Genet 43(5): 491-498.

Nielsen, R., J. S. Paul, A. Albrechtsen and Y. S. Song (2011). "Genotype and SNP
calling from next-generation sequencing data." Nat Rev Genet 12(6): 443-451.

Schlotterer, C., R. Tobler, R. Kofler and V. Nolte (2014). "Sequencing pools of
individuals - mining genome-wide polymorphism data without big funding." Nat Rev
Genet 15(11): 749-763.

-91 -


- 91 -


Variome — introduction (cont’d)

e Not all mismatches are SNPs!

Errors in library preparation/basecalling/mapping etc.

« The basic idea behind finding probability of bases at a locus (genotype
likelihoods) using Bayes theorem

P(A|B) =k X P( B|A) X P(A)

Error model \
genotype

Prior on genotype
data (e.g. P(G)=0.3 if GC content is 60%)
(or P(non-ref)=1e-4, if SNP rate is known to be 0.01%)
(or... any other “prior” constraint you know about)

—

O
Some SNP calling programs
published  citations

CRISP 2010 92

SNVer 2011 86

Samtools 2011 176

GATK 2011 >2000

(Genome Analysis Tool Kit)

SomaticSniper 2012 128

Varscan-2 2012 404
O
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Genome Analysis Tool Kit

Developed at The Broad Institute, Cambridge, MA
Installation: download directly from GATK website

Java Usage: a single jar file (except some preprocessing steps, which use bwa and
picard tools)

Help for anything related to GATK, available at GATK website (with Guide, tools
documentation and best practices)

Specifically, it is highly recommended to read the best practices before (or while)
using GATK:
https://www.broadinstitute.org/gatk/quide/best-practices

The use forums (http://gatkforums.broadinstitute.org/) are also great, with usually
very prompt responses by the GATK team J—

O

Before we start...

All figures in Module 1 and 2 are courtesy GATK online material (used here with
permission)

Our dataset : 4 samples from male D. viviparus worms

We selected just 2 contigs for illustration (You will usually do this on the whole
genomes of your worm of interest, so your SNP calling will take more than the 2
hours we have here!)

Starting data :

paired end reads in fastq format
(“Section_3/module_1/bwa/reads/S1_1.fastq” etc)

reference sequence and annotation
(fasta, bed and dff3 files in “Section_3/reference” directory)
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About GATK: Overall flow

NGS DATA PROCESSING

[ Raw Reads j

Non
GATK

Module 1 —

Mapping

l Duplicate Marking

Local Realignment

Base Quality Recalibration

[ Analysis-ready Reads j

VARIANT DISCOVERY
AND GENOTYPING

[Sample 1 Reads] ‘ [Samplei‘l Reads]

Call Variants

SNPs Indels Structural

Variations
Raw Variants

—
Module 2

GATK Process map

2>

@,

DATA CLEANUP

Map to Reference

BWA mem

Non-GATK

Mark Duplicates
& Sort (Picard)

[ Indel Realignment ]
v

[ Base Recalibration J
¥

Analysis-Ready
Reads

VARIANT DISCOVERY

INTEGRATIVE ANALYSIS

[ Raw Variants J [ External Data]

Variant Quality Recalibration
v

?
Genotype Refinement
Variant Evaluation
+

[ Analysis-ready Variants J

Useful, but mostly feasible only
with well studied model organisms
So, we won'’t be doing this here

/

-

o>

EVALUATION

Analysis-Ready
Variants

SNPs
& Indels

Genotype Likelihood

.| | Analysis-Ready Var. Calling
Reads HCin ERC mode

( s)
¥

[ Joint Genotyping ]
v

[ Raw Variants ]

] ]

Variant Recalibration
separately per variant type

|

Analysis-Ready
Variants

Variant Z
Annotation

troubleshoot

Variant Evaluation

look good?

o /o

use in project

O
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Section 3: Variome
Module 1: Processing and alignment

Preparing reference file and mapping

Preparing reference file
(You are here -> “Section_3/reference”)

bwa index reference.fasta
samtools faidx reference.fasta

java -jar ~/bin/picard-tools-1.101/
CreateSequenceDictionary.jar R=reference.fasta
O=reference.dict

Mapping using bwamem
(Section_3/module_1/bwa)
Important information about reads is also encoded simultaneously (library name,
sample name, read group etc). These are useful for analysis later.

cd ../module 1/bwa

for 1 in S1 S2 S3 S4;do bwa mem -t 8 -M -R "(@QRG
\tID:"$i" RGI\tPL:illuminal\tPU:"S$i" RG1 UNITI1\tLB:"$i"-
1ib1\tSM:"$i ../../reference/reference.fasta

reads/"$i" 1.fastqg reads/"$i" 2.fastqg >"$i".bwa.l.sam;done (—7
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Duplicate reads

Marking Duplicates

:}— Reference O — —aaaaaaan—

|
|
|

[ — T R _ e -
o0 I [ — e —
o0 [

=
oe—a L
o———
[ R
| e—
o0 L Mapped
= " reads
o——/)

[

e

| e——

i ;

Mark duplicates
¥ =sequencing error propagated in duplicates P

For correct estimation of variant likelihoods, we need our reads to represent the
correct proportions of molecules in the library. (actually we also want our library to
represent the proportions of original biological sample, and should be wary of
biases introduced by PCR etc, but right now let’s worry only about making sure
we don’t sequence a molecule more than once). One way of doing this is finding
out which sequences are highly likely to originate from the same DNA fragment,
and then removing all but one of that set.

—

O

Recognizing duplicates

Marking Duplicates

Finding reads that start at the same location. And, if paired end, that have
their partners also mapping at the same starting location.

We can’t simply compare the read sequences because sequencing is error
prone and will likely lead to high underestimation of duplicates.

Pos 1 2 345 6 78 9 Blue maps to forward strand
Ref TAGCCGATLC Orange maps to reverse strand
/ bases are clipped

rl TAGCCG Q

r2 TAGCZCG a Underlined is the expected 5’ start of the
read, given the mapping

r3 T A - C CAG Q

r4d TAGCCHE So...what are the duplicate sets?

r5 TAGCCGATGg

r6 S S GCCG y:Y

r7 GCCGA
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Removing Duplicates

(Section_3/module_1/bwa)

Sort and convert to bam

for 1 in S1 S2 S3 S4;do samtools view -bS "$i".bwa.sam |
samtools sort - "$i".bwa.sorted;done

Removing duplicates with Picard tools

for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/picard.jar
MarkDuplicates MAX FILE HANDLES FOR READ ENDS MAP=1000
REMOVE DUPLICATES=true INPUT="S$i".bwa.sorted.bam
OUTPUT="$S1i".dedup.bam METRICS FILE="$i".dedup metrics
ASSUME SORTED=true;done

Then you can look at some examples of before-and-after deduplication reads/
alignment using “samtools faidx”and “samtools tview” (or IGV)

—

O

Refining Alignments

Read aligners like bwa etc look at every read independently and try to find the best
alignment for every read. This may lead to spurious SNPs because of slightly “off
target” mappings, especially in presence of small indels (e.g. left figure below).
Realigning all such reads in this region simultaneously by making use of multiple
sequence alignment algorithms leads to more concordant alignments. This gets rid of
many false positive SNPs which are merely mapping artifacts (right figure below)

..... Ty

HiSoq data, raw BWA alignmants HScq data, afior MSA
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Emprica Quality

Realignment around indels

(Section_3/module_1/bwa)
Index our de-duplicated bam files

for 1 in S1 S2 S3 S4;do samtools index "$i".dedup.bam;done
Find intervals to analyze

for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T RealignerTargetCreator -R ~/
WORKSHOP RESOURCES/Section 3/reference/reference.fasta -I
"$i".dedup.bam -o "$i".realignment.intervals;done

Realign in these loci

for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T IndelRealigner -R ~/WORKSHOP RESOURCES/
Section 3/reference/reference.fasta -I "$i".dedup.bam -
targetIntervals "$i".realignment.intervals -o
"$i".dedup.realigned.bam; done

—

O

Base Recalibration (in presence of a truth set)

To improve base quality values, mismatches with reference are analyzed.
Assuming that any mismatch which isn’t a known SNP is an “error”, base qualities
can be readjusted to more closely model the reality (removing systematic errors in
original base quality reports).

However, this can only be done in the presence of a substantial set of known True
Positives (i.e. a large set of known SNPs). Since we don’t have that (yet), we’'ll
skip this and come back to it later...

The figure below shows the result of recalibrating errors from original reported
qualities to those obtained using mapping data (after filtering out known SNPs).

-10

g s 2 + Original FMSE = 2609 2 —— Original, RMSE = 2480
- & * Recaltrated, RMSE = 0060 ] — Recailvatnd, FMEE = 0.053
8 o ® - ® -
.J......
o i ¢ —
& o © “ o
. ° T - —
N I R N RS
=4 e w 7 s, . a ? —_
LR ]
o~ * Orignal, FMSE » 5634 E g -
o * Recaitrated, AMSE = 0.135 § ‘T’_ g
< <

Paired end Hiseq data

r T T T T T T 1
AA AG CA CG GA GG TA TG
Dinucieotide
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Section 3: Variome
Module 2: Variant calling

Introduction

HaplotypeCaller is the workhorse of GATK’s variant calling process. It calls variants
by assembling reads in “active regions” into haplotypes (completely independent of
reference sequence mapping) and then estimating likelihoods of genotypes at

variant loci based on how well each read represents those assembled haplotypes.

Identify ActiveRegions

~

\
Assemble plausible haplotypes

L ATATCAAATTGGTATAGGCT)|
T

a
A T G
A T @
e AR A +
< C] B A
& C I A \
@ L A |
C} T A |
T A [

N J \ J
A of
e e N

Determine per-read likelihoods (PairHMM) Genotype sample
A T A A T G
? ? - 0/0|0/11/1
AT @l P| [m
_caad g E5 2 Al
@ T A g T ch GLs + annotations
- J o
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Running HaplotypeCaller

Prepare files

(Section_3/module_2/haplo)

cd ../../module 2
mkdir haplo

cd haplo

for 1 in
bwa/"$i"

for i in
bwa/"$i"

S1 S2
.dedup.

S1 S2
.dedup.

S3 S4;do 1n -s ../../module 1/
realigned.bam; done

S3 S4;do 1In -s ../../module 1/
realigned.bai;done

Run HaplotypeCaller with GVCF

for i in S1 S2 S3 S4;do Java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T HaplotypeCaller -R ~/
WORKSHOP_RESOURCES/Section 3/reference/reference.fasta -I
"$i".dedup.realigned.bam -ERC GVCF -ploidy 2 -o
"$i".dedup.g.vcf;done

Some default settings for HaplotypeCaller

--maxReadsInRegionPerSample 10000
--min_base_quality_score 10
--minReadsPerAlignmentStart 10
--sample_ploidy 2
--standard_min_confidence_threshold_for_calling 30.0
--standard_min_confidence_threshold_for_emitting 30.0
--max_alternate_alleles 6
--maxNumHaplotypesInPopulation 128

See Details at

https://www.broadinstitute.org/gatk/gatkdocs/ _

org_broadinstitute_gatk_tools_walkers_haplotypecaller_HaplotypeCaller.php O
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The VCF file format

##fileformat
##ALT
##FILTER
##FORMAT
##INFO
##contig
itttreference

Full details: https://samtools.github.io/hts-specs/
VCFv4.2.pdf

HEADER

An example

RECORDS

#record headers

[0 variant site record
[0 variant site record
[0 variant site record

#fileformat=VCFv4.1

##ALT=<ID=NON_REF,Description="Represents any possible alternative allele at this location">

##FILTER=<ID=LowQual,Description="Low quality">

##FORMAT=<ID=AD,Number=.,Type=Integer,Description="Allelic depths for the ref and alt alleles in the order listed">

##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth (reads with MQ=255 or with bad mates are

filtered)”>

##INFO=<ID=AC,Number=A, Type=Integer,Description="Allele count in genotypes, for each ALT allele, in the same order as

listed">

##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency, for each ALT allele, in the same order as listed">

##contig=<ID=D_viviparus-1.0_Cont486,length=89705>

##contig=<ID=D_viviparus-1.0_Cont375,length=119898>

##reference=file:///home/ec2-user/WORKSHOP_RESOURCES/Section_3/reference/reference.fasta

#CHROM  POS ID REF ALT QUAL FILTER INFO FORMAT  $1 S2 S3 S4

D_viviparus-1.0_Cont486 255 . T C 2156.88 .
AC=2;AF=0.250;AN=8;DP=168;FS=0.000;MLEAC=2;MLEAF=0.250;MQ=60.00;QD=29.09;SOR=0.818
GT:AD:DP:GQ:PGT:PID:PL 1/1:0,49:49:99:1|1:255_T_C:2197,147,0 0/0:35,0:35:99:.:.:0,99,1485

£y
AJ
Using GVCFs to combine sample-wise variants
P——
-ERCGVCF -ERC BP_RESOLUTION
|| ##fileformat ##fileformat
| ##ALT #HALT .
: i Buiskae e ##GVCFBlock0-1=minGQ=0(inclusive),maxGQ=1(exclusive)
! | ##GVCFBlock ##INFO ##GVCFBlock1-2=minGQ=1(inclusive),maxGQ=2(exclusive)
| || ##INFO ##tcontig )
##contig ##reference
_‘ hreference
) #CHROM  POS ID REF ALT QUAL FILTER
RECORDS l #trecord headers I | #trecord headers INFO FORMAT S1 S2 s3 s4
[ non-variant block d || B non-variant sit d -
O varontserecord || D varontsterecord | | D_viviparus-1.0_Cont486 1 . A <NONREF>. .
B non-variant site record END=4 GTIDPZGQIMlN_DPZPL 0/0:17:48:17:0,48,720
I non-variant block record : non-var!an: si:e recorg D_viviparus-1.0_Cont486 5 . T <NON_REF>. .
non-variant site recor _ -ND- . . .18:24-18-
[0 variant site record O variant site record L. END=5 GTDPGQMIN—DPPL 0/0:18:31 '18'0‘31 ‘669
: I non-variant block record | | T non-variant site record D_viviparus-1.0_Cont486 6 . G <NON_REF>.
B non-variant site record END=9 GT:DP:GQ:MIN_DP:PL ~ 0/0:18:51:18:0,51,765
[0 variant site record [ variant site record
; B non-variant site record
I non-variant block record | [ B non-variant site record
M non-variant site record

(Section_3/module_2/haplo)

java —-Xmx8g —-jar ~/bin/GenomeAnalysisTK.jar -T GenotypeGVCFs -R
~/WORKSHOP_ RESOURCES/Section 3/reference/reference.fasta $(for
i in S1 S2 S3 S4;do echo -n "--variant "$i".dedup.g.vcf ";done)

-0 all raw.vct

O
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Variant Quality recalibration for refinement

To get a higher confidence set of real SNPs, we can look at a truth set (if we
have one) of real SNPs and analyze what values various relevant metrics take
for them. e.g. you may just pick up very rare (and potentially spurious) SNPs
just because of very high depth of coverage. Looking at various metrics

( Variant quality score/Depth, strand bias etc) may separate real SNPs with
False Positives (figures below).

So, first we calibrate using known SNPs, then use those calibrations to filter
out potential False Positives and obtain a final analysis-ready variant set.

a HiSeq; training on HapMap b HiSeq: evaluating new variants
i : More 32014 o Filtered novel SNP
More Likely dbSNP SNP found in dbSNP bias ® Retained novel SNP
bias 3201 errors @ SNP found at HapMap3 site » e
S 190 { NGRS i

& -—190{ " /. —Heterozygous © i U \ Y il

5 (‘ & variants \H QmIoZygous s N (

= % \ / . variants £ 7107 N ) A~ \

c . ~ R

g -710 \ [ o\ 5 /| N\

@ = 5 [\

5 8 -1,200 1 \ | \ |

o —1,200 S \ Al

2 2 f

@ o —1,700

ke \

& ~1700 Gaussian mixture

- Less
Lass model fits blas - ; L ;
bios T T T T 44 1.0 180 240
4t 5 ia : 18.0° 210 Variant quality score / depth p
Variant quality score / depth ( ’

Using hard filters

However, last page is useless for us since we don’t actually have a truth set.

We still want to set up a filter to refine our raw variant set. So, we’ll use some hard
filters (i.e. thresholds pre-decided rather than dynamically calibrated based on data).
We will use values recommended by GATK best practices, though these numbers
can be changed based on any insight you may have into your specific case.

QD : Quality by Depth <20

FS : FisherStrand >60.0

MQ : RMS Mapping Quality <40.0
MQRankSum : Mapping Quality Rank Sum <-12.5
ReadPosRankSum : Read Position Rank Sum <-8.0

In addition, we will also apply a depth of coverage filter (even though GATK team
advises that it isn’t as critical with HaplotypeCaller as with its older and almost
obsolete cousin “UnifiedGenotyper”). We just want high confidence SNPs to
generate a raw “truth set”. So, we’ll apply a relatively strict Depth filter. GATK used to
suggest Depth of Coverage (DP) > (mean+5*sd).

We will use DP > (median + 2*MAD) —_—

O
-102 -


- 102 -


Setting stage for filtering SNPs

Collecting SNPs and getting coverage
(Section_3/module_2/var _filt)

Prepare Files

cd ..

mkdir var filt

cd var filt/

In -s ../haplo/all raw.vcf

Extract SNPs from the “raw” vcf file

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T
SelectVariants -R ~/WORKSHOP RESOURCES/Section 3/
reference/reference.fasta -V all raw.vcf -selectType SNP -
o raw snps.vct

Getting DP filter threshold

Collecting SNPs and getting coverage
(Section_3/module_2/var _filt)

Finding base-wise coverages over the reference contigs (in order to find the
DP filter threshold)

for i in S1 S2 S3 S4;do 1ln -s ../../module 1/
bwa/"$i".dedup.realigned.bam; done

for i in S1 S2 S3 S4;do coverageBed -abam
"S$i".dedup.realigned.bam -b ../../reference/
reference.fasta.bed -d >"$i".coverage.bed;done

We will find the median and MAD (median absolute deviation) in R. This is done after
adding the depths over all the samples:

Sl<-read.table ("Sl.coverage.bed", header=F, stringsAsFactors=F)
S2<-read.table ("S2.coverage.bed", header=F, stringsAsFactors=F)
S3<-read.table ("S3.coverage.bed", header=F, stringsAsFactors=F)
S4<-read.table ("S4.coverage.bed", header=F, stringsAsFactors=F)
sum<-S18V6+3S28V6+3S33V6+345Ve6

summary (sum[sum<= (median (sum) + (2*mad (sum))) ]) i:y
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Applying SNP filters

Since we are only using DP to get a strict set for the purpose of base recalibration,
we are sloppy here and using bedtools coveragebed utility to get coverage (also,
partly because we want to introduce you to the convenient and useful coveragebed
utility). If you really want to get proper depth numbers to set your DP filter, you
should use the DepthofCoverage tool of GATK itself (as it takes care of any base
filters that are applied in GATK before counting depths).

Also, remember that DP doesn’t need to be used with HaplotypeCaller, and we
won’t use it to get our final SNP set anyway.

Now, we can apply our SNP filter!

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.Jjar -T
VariantFiltration -R ~/WORKSHOP RESOURCES/Section 3/
reference/reference.fasta -V raw snps.vcf -o

raw snps filtered.vcf --filterExpression " QD < 2.0 " --
filterName "OD" --filterExpression " FS > 60.0 " --

filterName "FS" --filterExpression " MQ < 40.0 " --filterName
"MQ" --filterExpression " MQRankSum < -12.5 " --filterName
"MQRankSum" --filterExpression " ReadPosRankSum < -8.0 " --
filterName "ReadPosRankSum" --filterExpression " DP > 268 "
-—-filterName "DP" i_)

Applying indel filters

(Section_3/module_2/var _filt)

Now, we’'ll repeat filtering with indels too (using separate thresholds recommended by
GATK best practices)

java —-Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T SelectVariants
-R ~/WORKSHOP RESOURCES/Section 3/reference/reference.fasta -V
all raw.vcf -selectType INDEL -o raw indels.vcf

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T
VariantFiltration -R ~/WORKSHOP RESOURCES/Section 3/reference/
reference.fasta -V raw indels.vcf -o raw indels filtered.vcf

-—-filterExpression " QD < 2.0 " --filterName "QD" --
filterExpression " FS > 200.0 " --filterName "FS"
filterExpression " ReadPosRankSum < -20.0 " --filterName
"ReadPosRankSum"
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Combining variants

(Section_3/module_2/var _filt)

We can now combine the SNPs and indels into a single variants file that
can be used as a “truth set” to recalibrate bases (that we talked about in
Module 1)

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T
CombineVariants -R ~/WORKSHOP RESOURCES/Section 3/
reference/reference.fasta --variant raw snps filtered.vcf
--variant raw _indels filtered.vcf -o

raw combined filtered.vcf -genotypeMergeOptions UNSORTED --
printComplexMerges

Using Variant set for base quality recalibration

(Section_3/module_1/bwa)

Prepare Files, get recalibration data and apply it to update base quality
values

cd ../../module 1/bwa
In -s ../../module 2/var filt/raw combined filtered.vcf

for i in S1 S2 S3 S4;do java -Xmx8g -jar ~/bin/
GenomeAnalysisTK.jar -T BaseRecalibrator -R ~/

WORKSHOP RESOURCES/Section 3/reference/reference.fasta -I
"$i".dedup.realigned.bam -knownSites raw combined filtered.vcf
-0 "$i".recal data.table;done

for i in S1 S2 S3 S4;do java -Xmx8g —-jar ~/bin/
GenomeAnalysisTK.jar -T PrintReads -R ~/WORKSHOP_ RESOURCES/
Section 3/reference/reference.fasta -I
"$i".dedup.realigned.bam -BQSR "$i".recal data.table -o
"$i".recal reads.bam;done

—

O
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Variant Calling again

With this presumably better set of base qualities, we’ll repeat our earlier steps for
variant calling (i.e. haplotypecaller followed by combining the sample GVCFs)

(Section_3/module_2/haplo)
cd ../../module 2/haplo

for i in S1 S2 S3 S4;do 1ln -s ../../module 1/
bwa/"$i".recal reads.bam;done
for i in S1 S2 S3 S4;do 1ln -s ../../module 1/
bwa/"$i".recal reads.bai;done

for 1 in S1 S2 S3 S4;do Java —-Xmx8g —-jar ~/bin/
GenomeAnalysisTK.jar -T HaplotypeCaller -R ~/WORKSHOP RESOURCES/
Section 3/reference/reference.fasta -I "$i".recal reads.bam -ERC
GVCF -ploidy 2 -o "$i".recal.g.vcf -bamout

"Si".recal.haplo.bam ;done

Java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T GenotypeGVCFs -R ~/
WORKSHOP RESOURCES/Section 3/reference/reference.fasta $(for i in
S1 S2 S3 S4;do echo -n "--variant "$i".recal.g.vcf ";done) -o

all recal.vct

“-bamout” option is just to get a bam file which can then be visualized using IGV (—
or “samtools tview” if you want to look at something closely. —)

Final SNPs hard filtering

We will again filter the variants with the hard filters introduced before. While we
will stop here for the demonstration, usually one wants to see some sort of
convergence of results before stopping. So, if you see a significant change in the
number of variants detected as compared to the last round, you can do the same
cycle all over again (i.e. using SNPs to recalibrate bases followed by calling and
filtering variants again)
(Section_3/module_2/var _filt)
cd ../var filt/
In -s ../haplo/all recal.vcf

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T SelectVariants -R
~/WORKSHOP RESOURCES/Section 3/reference/reference.fasta -V
all recal.vcf -selectType SNP -o recal snps.vct

java -Xmx8g -Jjar ~/bin/GenomeAnalysisTK.jar -T VariantFiltration
-R ~/WORKSHOP RESOURCES/Section 3/reference/reference.fasta -V

recal snps.vcf -o recal snps filtered.vcf --filterExpression " QD
< 2.0 " --filterName "QD" --filterExpression " FS > 60.0 " --
filterName "FS" --filterExpression " MQ < 40.0 " --filterName "MQ"
-—-filterExpression " MQRankSum < -12.5 " —--filterName "MQRankSum"
--filterExpression " ReadPosRankSum < -8.0 " --filterName —
"ReadPosRankSum” i_)
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Final indel hard filtering

We do apply hard filters for indels again.

(Section_3/module_2/var _filt)

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T SelectVariants
-R ~/WORKSHOP RESOURCES/Section 3/reference/reference.fasta -V
all recal.vcf -selectType INDEL -o recal indels.vcf

Java -Xmx8g -jar ~/bin/GenomeAnalysisTK.Jjar -T
VariantFiltration -R ~/WORKSHOP RESOURCES/Section 3/reference/
reference.fasta -V recal indels.vcf -o

recal indels filtered.vcf --filterExpression " QD < 2.0 " --
filterName "QD" --filterExpression " FS > 200.0 " --filterName
"FS" --filterExpression " ReadPosRankSum < -20.0 " --filterName
"ReadPosRankSum”

Combining variants for further analysis

Combining SNPs and indels gives a common variant file which can be used for
further analysis. In our case, we have a pre-generated file which will be used in
Module 4

java -Xmx8g -jar ~/bin/GenomeAnalysisTK.jar -T
CombineVariants -R ~/WORKSHOP RESOURCES/Section 3/reference/
reference.fasta --variant recal snps filtered.vcf --variant
recal indels filtered.vcf -o recal combined filtered.vcf -
genotypeMergeOptions UNSORTED --printComplexMerges

As said before, you should compare the change in variants after this round of
recalibration and calling (but we will move on to Module 4 regardless of the
change!)
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Section 3: Variome
Module 2: Variant calling (cont’ ed)

Visualization of variants

Variants in VCF format can be visualized using the Integrative Genomics Viewer (IGV), a
high-performance visualization tool for interactive exploration of large, integrated
genomic datasets (http://www.broadinstitute.org/igv/). IGV supports a wide variety of
data types, including next-generation sequence data and genomic annotations.

Options for installing and running IGV
(http://www.broadinstitute.org/software/igv/download)

1. (Mac only) Download and run the Mac application; or
2. (All systems) Use the Java Web Start buttons; or
2. (All systems) Download the binary distribution and run IGV from the command line.

Creating a .genome File

1. Click Genomes>Create .genome File. IGV displays a window where you enter the
information.

2. Enter an ID and a descriptive name for the genome (e.g., D_viviparus).

3. Enter the path to the FASTA file for the genome (reference. fasta). If the FASTA
file has not already been indexed, an index will be created during the import process.
This will generate a file with a ".fai" extension which must be in the same directory as the
FASTA file.

4. Specify the gene file (reference.gff3).

5. Click Save. IGV displays the Genome Archive window.

6. Select the directory in which to save the genome archive (*.genome) file and click
Save. IGV saves the genome and loads it into IGV.

Loading data
1. Select File>Load from File. IGV displays the Select Files window.
2. Select one or more data files or sample information files, then click OK.

Please load the following files:

recal combined filtered.vcf
Sl.recal.haplo.bam
S1l.dedup.realigned.bam

Section 3: Variome
Module 3: Variant annotation

Using SnpEff (http://snpeff.sourceforge.net), we will annotate and predict the effects of
variants on genes (such as amino acid changes). SnpEff is written in Java and runs on
Unix/Linux, OSX and Windows. It accepts input files in VCF/BED format, and can
provide consequence terms defined by the Sequence Ontology
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(http://www.sequenceontology.org) and in HGVS notation
(http://www.hgvs.org/mutnomen/).

Building databases
SnpEff needs a database to perform genomic annotations. In order to build a database
for a new genome, you need to:

1. Configure a new genome in SnpEff's config file.
1a. Add genome entry to snpEff's configuration by editing the snpEff.config file.

gedit ~/bin/snpEff/snpEff.config
Add the following lines, save the file and exit gedit.

# Dictyocaulus viviparus
D viviparus.genome : Dictyocaulus viviparus

1b (optional). If the genome uses a non-standard codon table, add codon table
parameter. Please see SnpEff documentation for detail
(http://snpeff.sourceforge.net/SnpEff_manual.html).

2. Create a directory for this new genome.

mkdir ~/bin/snpEff/data/D viviparus/

3. Get the reference genome sequence in FASTA format.

In -s ~/WORKSHOP RESOURCES/Section 3/reference/reference.fasta
~/bin/snpEff/data/D viviparus/sequences.fa

4. Get genome annotations from GFF file.

In -s ~/WORKSHOP RESOURCES/Section 3/reference/reference.gff3
~/bin/snpEff/data/D viviparus/genes.gff

5. Build a SnpEff database.
java -Xmx8g -jar ~/bin/snpEff.jar build -gff3 -v D viviparus

You can check the database to see if the features (genes, exons, UTRs, etc.) have been
correctly incorporated, by taking a look at the database.

java -Xmx8g -jar ~/bin/snpEff.jar dump D viviparus | less

Running SnpEff
1. Change directory to where the SnpEff output files will be saved.

cd ~/WORKSHOP RESOURCES/Section 3/module 3

- 109 -


- 109 -


2. You can annotate the vcf file by running the following command. Command line option
—v switches on the "verbose" mode, which can be useful for debugging.

java -Xmx8g -jar ~/bin/snpEff.jar -v D viviparus
~/WORKSHOP RESOURCES/Section 3/module 2/var filt/recal combined f
iltered.vcf > recal combined filtered.eff.vcf

SnpEff adds annotation information (‘ANN’ tag) to the INFO field of a VCF file. The INFO
field is the eighth column of a VCF file. SnpEff updates the header of the VCF file to add
the command line options used to annotate the file as well as SnpEff's version, so you
can keep track of what exactly was done.

less recal combined filtered.eff.vcf

3. SnpEff creates an additional output file showing overall statistics. This "stats" file is an
HTML file, which can be opened using a web browser.

chrome snpEff summary.html

4. SnpEff also generates a (tab separated) TXT file having counts of number of variants
affecting each transcript and gene.

head snpEff genes.txt

Filter and manipulate annotated VCF files using SnpSift

1. Once your genomic variants have been annotated, you need to filter them out in order
to find the "interesting/relevant variants". SnpSift helps to perform this VCF file
manipulation and filtering. It can be used to extract fields from a VCF file to a tab
separated TXT format that you can easily load in R, Excel, etc.

cat recal combined filtered.eff.vcf |
~/bin/snpEff/scripts/vcfEffOnePerlLine.pl | java -Xmx8g -jar
~/bin/SnpSift.jar extractFields - CHROM POS REF ALT AF

"ANN[*] .ALLELE" "ANN[*].EFFECT"™ "ANN[*].IMPACT" "ANN[*].GENE"
"ANN[*] .HGVS C" "ANN[*].HGVS P" > recal combined filtered.eff.txt

head recal combined filtered.eff.txt
2. You can now easily list, for instance, the coding variants identified in your genes of
interest (e.g., DICVIV_10165 and DICVIV_11294)

cat recal combined filtered.eff.txt | grep -v "MODIFIER" | grep -
E "DICVIV 10165|DICVIV_11294"
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Section 4: Final topics
Module 0: Finding sequence resources

If you’re looking for genomic sequence data, two of the best public resources available to you
are the Ensembl websites and NCBI's GenBank. Ensembl maintains a collection of websites
organized by higher order taxonomy: Ensembl, Ensembl Metazoa, Ensembl Bacteria, Ensembl
Protists, Ensembl Fungi, Ensembl Plants, etc... while GenBank’s website is a single entity.
Both provide the ability to locate and download genome sequence and annotation. For most of
your data needs these two sites will be your go-to resources

For Helminth specific data, your best bet will be one of the more specialized websites such as
WormBase, WormBase Parasite, and our own Helminth.net websites (Nematode.net &
Trematode.net). For genomic sequence data and gene annotation, the WormBase sites are
very well organized and have a lot of worm data available. For worm model organisms such as
C.elegans, the original WormBase maintains a trove of curated annotation. WormBase Parasite
maintains a broad collection of genomic sequence and gene annotation on most of the currently
studied parasitic helminthes. And the Helminth.net sites are a good source for finding higher
order analysis and annotation.

Useful Information:

(Ensembl) http://useast.ensembl.org/index.html?redirect=no
(Ensembl Metazoa) http://metazoa.ensembl.org/index.html
(NCBI GenBank) http://www.ncbi.nIm.nih.gov/genbank/
(NCBI SRA) http://www.ncbi.nlm.nih.gov/sra
(
(
(

Helminth.net) http://helminth.net
WormBase Parasite) http://parasite.wormbase.org/index.html
WormBase) http://www.wormbase.org

Section 4: Final topics
Module 1: Bioinformatics packages

By now you’ve probably realized that many of the workhorse tasks used by computational
biologists already have publicly available, robust solutions. The links provided below take you to
documentation for some of the packages we find most useful. When faced with a new analysis
task, scan the overviews of these packages, google search, or just ask around. You'll often find
that some imposing problem you are faced with has a very simple, packaged tool already
available!

One resource of special note is the Galaxy platform. It's a web-based platform for developing
and running bioinformatics workflows. While not appropriate for large scale processing of data,
for most projects involving just a handful of samples it works very well. The Galaxy project itself
developed the Galaxy platform, and their intent is for other labs to take their software and setup
their own resources for others to use. But the developers themselves maintain a fantastically
full featured Galaxy site themselves!
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Useful Information:

(samtools) http://samtools.sourceforge.net

(picard) http://broadinstitute.github.io/picard/
(bedtools) http://bedtools.readthedocs.org/en/latest/
(

(

bamtools) https://github.com/pezmaster31/bamtools/wiki/Using-the-toolkit
list of RNA-Seq bioinformatics tools) https://en.wikipedia.org/wiki/List of RNA-

Seq bioinformatics tools
(Galaxy) https://usegalaxy.org

Section 4: Final topics
Module 2: Sources of help for bioinformaticians

Good places to turn if you need bioinformatics help are:
1) SegAnswers — bioinformatics forum
2) Biostars forum
3) Google!

Useful information:

(SegAnswers — bioinformatics forum) http://seqanswers.com/forums/forumdisplay.php?f=18

(Biostars forum) https://www.biostars.org

Section 4: Final topics
Module 3: Open discussion

Open discussion and specific questions.
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